Radical prostatectomy is performed on approximately 40% of men with organ-confined prostate cancer. Pathologic information obtained from the prostatectomy specimen provides important prognostic information and guides recommendations for adjuvant treatment. The current pathology protocol in most centers involves primarily qualitative assessment. In this paper, we describe and evaluate our system for automatic prostate cancer detection and grading on hematoxylin & eosin-stained tissue images. Our approach is intended to address the dual challenges of large data size and the need for high-level tissue information about the locations and grades of tumors. Our system uses two stages of AdaBoost-based classification. The first provides high-level tissue component labeling of a superpixel image partitioning. The second uses the tissue component labeling to provide a classification of cancer versus noncancer, and low-grade versus high-grade cancer. We evaluated our system using 991 sub-images extracted from digital pathology images of 50 whole-mount tissue sections from 15 prostatectomy patients. We measured accuracies of 90% and 85% for the cancer versus noncancer and high-grade versus low-grade classification tasks, respectively. This system represents a first step toward automated cancer quantification on prostate digital histopathology imaging, which could pave the way for more accurately informed postprostatectomy patient care.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2013.2265334DOI Listing

Publication Analysis

Top Keywords

tissue component
12
cancer detection
8
prostate cancer
8
high-level tissue
8
component labeling
8
cancer versus
8
versus noncancer
8
cancer
7
tissue
6
prostate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!