Download full-text PDF

Source
http://dx.doi.org/10.1038/498041aDOI Listing

Publication Analysis

Top Keywords

high-temperature superconductivity
4
superconductivity sound
4
sound hidden
4
hidden order
4
high-temperature
1
sound
1
hidden
1
order
1

Similar Publications

Evidence for a metal-bosonic insulator-superconductor transition in compressed sulfur.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal-superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics.

View Article and Find Full Text PDF

The pseudogap phenomena have been a long-standing mystery of the cuprate high-temperature superconductors. The pseudogap in the electron-doped cuprates has been attributed to band folding due to antiferromagnetic (AFM) long-range order or short-range correlation. We performed an angle-resolved photoemission spectroscopy study of the electron-doped cuprates PrLaCeCuO showing spin-glass, disordered AFM behaviors, and superconductivity at low temperatures and, by measurements with fine momentum cuts, found that the gap opens on the unfolded Fermi surface rather than the AFM Brillouin zone boundary.

View Article and Find Full Text PDF

During the preparation of single-domain (S-D) REBaCuO (RE-123) superconducting bulks, the seed crystals can serve as templates for crystal growth, guiding the newly formed crystals to grow in a specific direction, thereby ensuring the consistency of the crystal orientation within the sample. However, the infiltration temperature is typically restricted to approximately 1050 °C when employing NdBaCuO (Nd-123) crystal seeds in the traditional top-seeded infiltration growth (TSIG) technique for producing single-domain Y-123 bulk superconductors. In the present study, to overcome the temperature limitations of the heat treatment process, the optimized YO +011 IG (011 refers to BaCuO powder) method was employed to fabricate a group of single-domain Y-123 bulks with a high-temperature infiltration (1000-1300 °C).

View Article and Find Full Text PDF

Temperature-Dependent Structural Evolution of Ruddlesden-Popper Bilayer Nickelate LaNiO.

Inorg Chem

January 2025

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.

A recent article ( 2024, 146, 7506-7514) details a pressure-temperature (-) phase diagram for the Ruddlesden-Popper bilayer nickelate LaNiO (LNO-2222) using synchrotron X-ray diffraction. This study identifies a phase transition from (#63) to (#69) within the temperature range of 104-120 K under initial pressure and attributes the 4/ (#139) space group to the structure responsible for the superconductivity of LNO-2222. Herein, we examine the temperature-dependent structural evolution of LNO-2222 single crystals at ambient pressure.

View Article and Find Full Text PDF

High-temperature field-free superconducting diode effect in high-T cuprates.

Nat Commun

January 2025

International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.

The superconducting diode effect (SDE) is defined by the difference in the magnitude of critical currents applied in opposite directions. It has been observed in various superconducting systems and attracted high research interests. However, the operating temperature of the SDE is typically low and/or the sample structure is rather complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!