The increasing commercial use of silver nanoparticles (Ag-NPs) will inevitably lead to elevated silver exposure and thus to potential human health complications. In this study the acute toxicity of Ag-NPs <20 nm alone and upon co-administration with food matrix component phenolic compounds (PCs) on the cell-based models of the gastrointestinal tract was investigated. An improved co-culture model of Caco-2 and RajiB cells was applied for more precise in vitro simulation of the gastrointestinal tract. The involvement of two major factors contributing to the toxicity of Ag-NPs, i.e. the release of Ag(+) and the induction of oxidative stress, was investigated. Ag-NPs were cytotoxic for Caco-2 cells with an EC50 of ca. 40 µg/ml. Ag-NPs led to oxidative stress starting from ca. 45 µg/ml. The epithelial barrier integrity disruption by Ag-NPs on Caco-2 cell mono- and co-cultures was established by decreased transepithelial electrical resistances and increased passages of Lucifer Yellow, a paracellular marker. Immunofluorescence staining demonstrated that Ag-NPs affect occludin and zonula occludens 1 distributions, suggesting the opening of tight junctions. Ag(+), corresponding to the release from Ag-NPs, demonstrated a partial contribution in the toxic parameters, induced by Ag-NPs. Two PCs, quercetin and kaempferol, partially protected the Caco-2 cells from Ag-NP-induced toxicity and maintained the epithelial barrier integrity, disrupted by NPs. No protective effect was observed for resveratrol. The protective effect could be beneficial and decrease the potential toxicity of ingested Ag-NPs. However, the precise mechanisms of barrier-integrity-destabilising action of Ag-NPs/Ag(+) and protective effect of PCs still require further elucidation.

Download full-text PDF

Source
http://dx.doi.org/10.3109/17435390.2013.812258DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
vitro toxicity
4
toxicity assessment
4
assessment silver
4
nanoparticles presence
4
presence phenolic
4
phenolic compounds--preventive
4
compounds--preventive agents
4
agents harmful
4
harmful effect?
4

Similar Publications

The jute hairy caterpillar, Spilosoma obliqua (Lepidoptera: Erebidae) is considered as one of the major threats to jute cultivation. The best eco-friendly methods to combat these jute pests involve administration of nano-biopesticides, as a successful alternative to the toxic chemicals. In this study, a nano-biopesticide formulation containing green synthesized silver nanoparticles (Ag NPs) using Ocimum sanctum leaf extract has been proposed.

View Article and Find Full Text PDF

This study investigates the potential of zinc oxide (ZnO) and Ag-doped zinc oxide (Ag-ZnO) nanoparticles (NPs) (1, 3 and 5 wt%) electrospun into poly(vinylidene fluoride) (PVDF) based triboelectric nanogenerators (TENGs) to harness electrical energy from ambient mechanical vibrations. ZnO and Ag-ZnO NPs were developed using a co-precipitation method. 3 wt% Ag-ZnO doping was optimized to exhibit a higher β-crystalline phase in PVDF (PAZ3).

View Article and Find Full Text PDF

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.

View Article and Find Full Text PDF

Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!