GdHPDO3A is one of the most used MRI contrast agents (CAs) for clinical use. However, unlike most of the other commercially available Gd-based CAs, only limited information is available on its solution structure and dynamics. 600 MHz high resolution (1)H NMR spectra of nine LnHPDO3A complexes (Ln = Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, and Yb) have been recorded at 298 K and neutral pH. Because of the low symmetry of the Ln-chelates, each proton gives rise to a different peak. Despite the very crowded spectra, it is possible to detect the presence of two sets of resonances associated with different isomers in solution in slow exchange in the NMR time scale. In principle, the LnHPDO3A complexes may be present in solution as eight isomeric forms (four enantiomeric pairs) differing in the layout of the acetate arms (Δ or Λ), in the conformation of the macrocyclic ring (δδδδ or λλλλ) and in the configuration of the chiral center (R or S). 1D- and 2D proton NMR spectra were measured as a function of temperature across the Lanthanide series. The data allow identifying the nature of the most abundant isomeric species in solution (e.g., Λ(λλλλ)-R/Λ(δδδδ)-R and their enantiomeric forms Δ(δδδδ)-S/Δ(λλλλ)-S) and their interconversion process. Analysis of the data led us to identify the presence in solution of a third isomeric species, lacking the coordinated water molecule (q = 0), whose population becomes more relevant for the heavier lanthanides (Ln = Er-Lu). Moreover, we have introduced an innovative way of modeling the thermodynamic equilibrium between the various isomeric forms of LnHPDO3A that can be extended to a number of other systems. This analysis enabled us to calculate the molar fractions of the two isomeric forms for GdHPDO3A (χ = 0.7 and 0.30, for SAP and TSAP, respectively). This information has allowed interpreting the slightly anomalous relaxometric properties of GdHPDO3A. In particular, we observed that the temperature dependence of the (17)O NMR transverse relaxation rate of GdHPDO3A, R2, reveals an unusual trend at low temperatures and at high magnetic field strength (>9.4 T). This behavior has been attributed to the occurrence of a very large difference in the rate of water exchange, k(ex), for the two isomeric species (1/k(ex) = τM = 640 ± 35 ns and 8.9 ± 0.5 ns, for the major and minor isomer respectively).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic400716c | DOI Listing |
The hexadehydro-Diels-Alder (HDDA) reaction is a cycloisomerization between a conjugated diyne and a tethered diynophile that generates -benzyne derivatives. Considerable fundamental understanding of aryne reactivity has resulted from this body of research. The multi-yne cycloisomerization substrate is typically pre-formed and the (rate-limiting) closure of this diyne/diynophile pair to produce the isomeric benzyne generally requires thermal input, often requiring reaction temperatures of >100 °C and times of 16-48 h to achieve near-full conversion.
View Article and Find Full Text PDFAdv Clin Chem
January 2025
Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States. Electronic address:
Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
Recent photolysis experiments with formic acid suggest that the roaming mechanism is a significant CO-forming pathway at a photolysis energy of 230 nm. While previous computational studies have identified multiple dissociation pathways for CO-forming channels, the dynamic features of these pathways remain poorly understood. This study investigates the dissociation dynamics of the CO + HO and CO + H channels in the ground state (S) of formic acid using direct dynamics simulation and the generalized multi-center impulsive model (GMCIM) at 230 nm.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Blvd, South San Francisco, California 94080, United States.
Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs and is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, University of Helsinki, Helsinki, Finland.
Secondary organic aerosols (SOAs) significantly impact Earth's climate and human health. Although the oxidation of volatile organic compounds (VOCs) has been recognized as the major contributor to the atmospheric SOA budget, the mechanisms by which this process produces SOA-forming highly oxygenated organic molecules (HOMs) remain unclear. A major challenge is navigating the complex chemical landscape of these transformations, which traditional hypothesis-driven methods fail to thoroughly investigate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!