Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) block copolymer (composition: 4000PEOT30PBT70) and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet's native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667808 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064772 | PLOS |
Biophys Rev
December 2024
Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Cells and tissues are often under some level of confinement, imposed by the microenvironment and neighboring cells, meaning that there are limitations to cell size, volume changes, and fluid exchanges. 3D cell culture, increasingly used for both single cells and organoids, inherently impose levels of confinement absent in 2D systems. It is thus key to understand how different levels of confinement influences cell survival, cell function, and cell fate.
View Article and Find Full Text PDFCell Mol Bioeng
June 2024
Department of Pathology & Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912 USA.
Purpose: Human extracellular matrix (ECM) exhibits complex protein composition and architecture depending on tissue and disease state, which remains challenging to reverse engineer. One promising approach is based on cell-secreted ECM from primary human fibroblasts that can be decellularized into acellular biomaterials. However, fibroblasts cultured on rigid culture plastic or biomaterial scaffolds can experience aberrant mechanical cues that perturb the biochemical, mechanical, and the efficiency of ECM production.
View Article and Find Full Text PDFBiomicrofluidics
May 2024
College of Science & General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia.
The integration of microfabrication and microfluidics techniques into cell culture technology has significantly transformed cell culture conditions, scaffold architecture, and tissue biofabrication. These tools offer precise control over cell positioning and enable high-resolution analysis and testing. Culturing cells in 3D systems, such as spheroids and organoids, enables recapitulating the interaction between cells and the extracellular matrix, thereby allowing the creation of human-based biomimetic tissue models that are well-suited for pre-clinical drug screening.
View Article and Find Full Text PDFCell Transplant
May 2024
Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA.
Pancreatic islet transplantation is one of the clinical options for certain types of diabetes. However, difficulty in maintaining islets prior to transplantation limits the clinical expansion of islet transplantations. Our study introduces a dynamic culture platform developed specifically for primary human islets by mimicking the physiological microenvironment, including tissue fluidics and extracellular matrix support.
View Article and Find Full Text PDFMater Today Bio
June 2024
THEDONEE Inc., Research Center, Seoul, Republic of Korea.
Rheumatoid arthritis (RA) is known to be caused by autoimmune disorders and can be partially alleviated through Disease-Modifying Antirheumatic Drugs (DMARDs) therapy. However, due to significant variations in the physical environment and condition of each RA patient, the types and doses of DMARDs prescribed can differ greatly. Consequently, there is a need for a platform based on patient-derived cells to determine the effectiveness of specific DMARDs for individual patient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!