Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The tribological properties of two distinctive alkanethiol SAMs, 16-mercaptohexadecanoic acid (MHA) and 1-octadecanethiol (ODT), on gold substrates in various humidity conditions were examined by lateral force microscopy (LFM). The results suggest that hydrophobic ODT SAM is insensitive to humidity. The difference of lateral force signal is within ±10% regardless of humidity. The lateral force signal of hydrophilic MHA SAMs has a significant decrease in signal in humid environments. The influence of bulk water was also investigated by LFM. By imaging under water, the capillary force is eliminated on ODT SAMs, which leads to a lower lateral force. However, the lateral force image was reversed on MHA SAMs, which suggested that hydrophobic forces dominated in water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659650 | PMC |
http://dx.doi.org/10.1155/2013/748295 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!