The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662110PMC
http://dx.doi.org/10.1155/2013/510763DOI Listing

Publication Analysis

Top Keywords

vector evaluated
24
evaluated particle
24
particle swarm
24
swarm optimisation
24
optimisation algorithm
20
best solution
16
swarm
12
nondominated solutions
12
solution swarm
12
improved vector
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!