Structural resonance and mode of flutter of hummingbird tail feathers.

J Exp Biol

Peabody Museum of Natural History, Yale University, PO Box 208106, New Haven, CT 06511, USA.

Published: September 2013

AI Article Synopsis

  • Feathers can create sound through fluttering in airflow, which is linked to their structural resonance frequencies and aerodynamic forces.
  • A study on hummingbird tail feathers showed different flutter modes, such as tip, trailing vane, and torsional modes, which can switch abruptly with changes in airspeed or orientation.
  • The research confirmed that the flutter behavior corresponds to the feather's bending or torsional resonance frequencies, particularly noting a stronger match with tip and torsional modes compared to trailing vane modes.

Article Abstract

Feathers can produce sound by fluttering in airflow. This flutter is hypothesized to be aeroelastic, arising from the coupling of aerodynamic forces to one or more of the feather's intrinsic structural resonance frequencies. We investigated how mode of flutter varied among a sample of hummingbird tail feathers tested in a wind tunnel. Feather vibration was measured directly at ~100 points across the surface of the feather with a scanning laser Doppler vibrometer (SLDV), as a function of airspeed, Uair. Most feathers exhibited multiple discrete modes of flutter, which we classified into types including tip, trailing vane and torsional modes. Vibratory behavior within a given mode was usually stable, but changes in independent variables such as airspeed or orientation sometimes caused feathers to abruptly 'jump' from one mode to another. We measured structural resonance frequencies and mode shapes directly by measuring the free response of 64 feathers stimulated with a shaker and recorded with the SLDV. As predicted by the aeroelastic flutter hypothesis, the mode shape (spatial distribution) of flutter corresponded to a bending or torsional structural resonance frequency of the feather. However, the match between structural resonance mode and flutter mode was better for tip or torsional mode shapes, and poorer for trailing vane modes. Often, the 3rd bending structural harmonic matched the expressed mode of flutter, rather than the fundamental. We conclude that flutter occurs when airflow excites one or more structural resonance frequencies of a feather, most akin to a vibrating violin string.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.085993DOI Listing

Publication Analysis

Top Keywords

structural resonance
24
mode flutter
16
resonance frequencies
12
mode
10
flutter
9
resonance mode
8
hummingbird tail
8
tail feathers
8
trailing vane
8
mode shapes
8

Similar Publications

Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.

Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.

View Article and Find Full Text PDF

Importance: Cannabis use has increased globally, but its effects on brain function are not fully known, highlighting the need to better determine recent and long-term brain activation outcomes of cannabis use.

Objective: To examine the association of lifetime history of heavy cannabis use and recent cannabis use with brain activation across a range of brain functions in a large sample of young adults in the US.

Design, Setting, And Participants: This cross-sectional study used data (2017 release) from the Human Connectome Project (collected between August 2012 and 2015).

View Article and Find Full Text PDF

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

Based on the DCV-C system of fullerene acceptor organic solar cell active materials, the charge transfer process of D-A type molecular materials under the action of an external electric field () was explored. Within the range of electric field application, the excited state characteristics exhibit certain regular changes. Based on reducing the excitation energy, the excitation mode shows a trend of developing toward low excited states.

View Article and Find Full Text PDF

On the heels of the continuous development of optical fiber sensing technology, optical fiber sensors based on surface plasmon resonance (SPR) have attracted widespread attention. Herein, an SPR sensor based on the six nested anti-resonant fiber (ARF) is designed and analyzed by the finite element method (FEM). All the structural parameters are optimized to achieve high-sensitivity liquid refractive index detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!