The osteocyte product sclerostin is emerging as an important paracrine regulator of bone mass. It has recently been shown that osteocyte production of receptor activator of NF-κB ligand (RANKL) is important in osteoclastic bone resorption, and we reported that exogenous treatment of osteocytes with sclerostin can increase RANKL-mediated osteoclast activity. There is good evidence that osteocytes can themselves liberate mineral from bone in a process known as osteocytic osteolysis. In the current study, we investigated sclerostin-stimulated mineral dissolution by human primary osteocyte-like cells (hOCy) and mouse MLO-Y4 cells. We found that sclerostin upregulated osteocyte expression of carbonic anhydrase 2 (CA2/Car2), cathepsin K (CTSK/Ctsk), and tartrate-resistant acid phosphatase (ACP5/Acp5). Because acidification of the extracellular matrix is a critical step in the release of mineral from bone, we further examined the regulation by sclerostin of CA2. Sclerostin stimulated CA2 mRNA and protein expression in hOCy and in MLO-Y4 cells. Sclerostin induced a decrease in intracellular pH (pHi) in both cell types as well as a decrease in extracellular pH (pHo) and the release of calcium ions from mineralized substrate. These effects were reversed in the co-presence of the carbonic anhydrase inhibitor, acetozolamide. Car2-siRNA knockdown in MLO-Y4 cells significantly inhibited the ability of sclerostin to both reduce the pHo and release calcium from a mineralized substrate. Knockdown in MLO-Y4 cells of each of the putative sclerostin receptors, Lrp4, Lrp5 and Lrp6, using siRNA, inhibited the sclerostin induction of Car2, Catk and Acp5 mRNA, as well as pHo and calcium release. Consistent with this activity of sclerostin resulting in osteocytic osteolysis, human trabecular bone samples treated ex vivo with recombinant human sclerostin for 7 days exhibited an increased osteocyte lacunar area, an effect that was reversed by the co-addition of acetozolamide. These findings suggest a new role for sclerostin in the regulation of perilacunar mineral by osteocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbmr.2003 | DOI Listing |
Arthritis Rheumatol
October 2024
Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; and Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong SAR, China.
Objective: Emerging evidence suggests long noncoding RNA H19 is associated with osteoarthritis (OA) pathology. However, how H19 contributes to OA has not been reported. This study aims to investigate the biologic function of H19 in OA subchondral bone remodeling and OA progression.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
October 2024
Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea.
Osteocytes are located in the lacunae of fluid-filled bone and communicate with neighboring or distant cells by secreting small extracellular vesicles (sEVs) and growth factors as well as via dendrite-dendrite direct connections. However, the mechanism regulating sEV production in osteocytes is yet to be elucidated. In this study, we investigated sEV production and its underlying mechanism in osteocytes cultured on a three dimensional (3D) scaffold.
View Article and Find Full Text PDFBone
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L3N6, Canada. Electronic address:
Yes-associated protein (YAP) is a mechanosensitive protein crucial for bone remodeling. Although research has identified pathways and components involved in YAP regulation, the precise mechanisms of its localization during Piezo1 activation or vibration remain unclear. Piezo1, a mechanosensitive ion channel, allows calcium ions to flow into cells upon activation.
View Article and Find Full Text PDFCalcif Tissue Int
November 2024
Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA.
Cells
September 2024
Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
Plastin-3 (PLS3) encodes T-plastin, an actin-bundling protein mediating the formation of actin filaments by which numerous cellular processes are regulated. Loss-of-function genetic defects in PLS3 are reported to cause X-linked osteoporosis and childhood-onset fractures. However, the molecular etiology of PLS3 remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!