This study investigated the use of three-dimensional porous chitosan-alginate (CA) scaffolds for critical size calvarial defect (diameter, 5.0 mm) repair in Sprague-Dawley rats. CA scaffolds have been used for in vitro culture of many cell types and demonstrated osteogenesis in ectopic locations in vivo, but have yet to be evaluated for functional bone tissue engineering applications. CA scaffolds demonstrated the ability to support undifferentiated mesenchymal stem cells (MSCs) in culture for 14 days in vitro and promoted spherical morphology. In vivo tests were performed using CA scaffolds and CA scaffolds with treatments including undifferentiated MSCs, bone marrow aspirate, and bone morphogenetic protein-2 (BMP-2) growth factor in comparison to unfilled bone defect used as a control. The samples were analyzed with MicroCT, histology, and immunohistochemical staining at 4 and 16 weeks. Partial defect closure was observed in all experimental groups at 16 weeks, with the greatest defect closure (71.56 ± 19.74%) in the animal group treated with CA scaffolds with BMP-2 (CA + BMP-2). The experimental samples demonstrated osteogenesis in histology and immunohistochemical staining, with the CA + BMP-2 group, showing the greatest level of osteogenesis. Tissue engineered CA scaffolds show promise in reconstruction of critical size bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.34593DOI Listing

Publication Analysis

Top Keywords

three-dimensional porous
8
porous chitosan-alginate
8
scaffolds
8
chitosan-alginate scaffolds
8
critical size
8
demonstrated osteogenesis
8
histology immunohistochemical
8
immunohistochemical staining
8
defect closure
8
bone
6

Similar Publications

Imine-Linked 3D Covalent Organic Framework Membrane Featuring Highly Charged Sub-1 nm Channels for Exceptional Lithium-Ion Sieving.

Adv Mater

January 2025

College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China.

Coupling ion exclusion and interaction screening within sub-nanoconfinement channels in novel porous material membranes hold great potential to realize highly efficient ion sieving, particularly for high-performance lithium-ion extraction. Diverse kinds of advanced membranes have been previously reported to realize this goal but with moderate performance and complex operations gained. Herein, these issues are circumvented by preparing the consecutive and intact imine-linked three-dimensional covalent organic framework (i.

View Article and Find Full Text PDF

Synthesis of three-dimensional covalent organic frameworks through a symmetry reduction strategy.

Nat Chem

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China.

Three-dimensional (3D) covalent organic frameworks (COFs) hold significant promise for a variety of applications. However, conventional design approaches using regular building blocks limit the structural diversity of 3D COFs. Here we design and synthesize two 3D COFs, designated as JUC-644 and JUC-645, through a methodology that relies on using eight-connected building blocks with reduced symmetry.

View Article and Find Full Text PDF

Single Precursor-Derived Sub-1 nm MoCo Bimetallic Particles Decorated on Phosphide-Carbon Nitride Framework for Sustainable Hydrogen Generation.

ACS Appl Mater Interfaces

January 2025

Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.

The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.

View Article and Find Full Text PDF

Monitoring of the Local Extracellular Environment Using Chiral Gold Nanoparticles.

J Am Chem Soc

January 2025

CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain.

In three-dimensional (3D)-printed tissue models, sensitive, noninvasive techniques are required to detect changes in hydrogel structure caused by cellular remodeling. We demonstrate herein that circular dichroism (CD) spectroscopy provides a reliable method for detecting hydrogel structural variations. We probe directly the plasmonic optical activity of chiral gold nanorods (c-AuNRs) embedded within the hydrogel matrix, in response to variations in the local environment.

View Article and Find Full Text PDF

Sodium alginate-crosslinked montmorillonite nanosheets hydrogel for efficient gallium recovery.

Int J Biol Macromol

January 2025

Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, Henan 450001, PR China.

An efficient adsorbent for Ga(III) recovery was developed by applying the geochemical principles of Ga mineralization, using Al-rich clay minerals with a natural affinity for Ga as the raw material. Sodium alginate (SA) facilitated the cross-linked assembly of montmorillonite nanosheets (MMTNS), forming a three-dimensional structured hydrogel. This was achieved through electrostatic interactions between -OH groups on the edges of MMTNS and -COO groups in SA, as well as the complexation of Ca and -COO groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!