A snapshot 3-Dimensional Optical Coherence Tomography system was developed using Image Mapping Spectrometry. This system can give depth information (Z) at different spatial positions (XY) within one camera integration time to potentially reduce motion artifact and enhance throughput. The current (x,y,λ) datacube of (85×356×117) provides a 3D visualization of sample with 400 μm depth and 13.4 μm in transverse resolution. Axial resolution of 16.0 μm can also be achieved in this proof-of-concept system. We present an analysis of the theoretical constraints which will guide development of future systems with increased imaging depth and improved axial and lateral resolutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686468PMC
http://dx.doi.org/10.1364/OE.21.013758DOI Listing

Publication Analysis

Top Keywords

optical coherence
8
coherence tomography
8
tomography system
8
image mapping
8
mapping spectrometry
8
snapshot optical
4
system
4
system image
4
spectrometry snapshot
4
snapshot 3-dimensional
4

Similar Publications

Background: Despite fractional flow reserve (FFR)-guided deferral of revascularization, recurrent events in patients with diabetes or after myocardial infarction remain common. This study aimed to assess the association between FFR-negative but high-risk nonculprit lesions and clinical outcomes.

Methods: This is a patient-level pooled analysis of the prospective natural-history COMBINE (OCT-FFR) study (Optical Coherence Tomography Morphologic and Fractional Flow Reserve Assessment in Diabetes Mellitus Patients) and PECTUS-obs study (Identification of Risk Factors for Acute Coronary Events by OCT After STEMI and NSTEMI Patients With Residual Non- Flow Limiting Lesions).

View Article and Find Full Text PDF

Significance: Radiofrequency ablation to treat atrial fibrillation (AF) involves isolating the pulmonary vein from the left atria to prevent AF from occurring. However, creating ablation lesions within the pulmonary veins can cause adverse complications.

Aim: We propose automated classification algorithms to classify optical coherence tomography (OCT) volumes of human venoatrial junctions.

View Article and Find Full Text PDF

Femtosecond laser-assisted large-diameter lamellar corneal-limbal keratoplasty in ocular chemical burns.

Am J Ophthalmol Case Rep

March 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: This study highlights the feasibility of femtosecond laser-assisted large-diameter lamellar corneal-limbal keratoplasty and its efficacy in the treatment of ocular surface failure caused by bilateral ocular chemical injury.

Observations: The series included 3 patients with ocular surface failure caused by bilateral ocular chemical burns. After dissection of the host cornea, a femtosecond laser-assisted large-diameter lamellar corneoscleral button, with varying thickness of 250-400 μm, was sutured to the recipient bed.

View Article and Find Full Text PDF

Background: Anterior uveitis is a common manifestation in individuals with rheumatic conditions such as spondylarthritis, Behçet's syndrome, juvenile idiopathic arthritis, and sarcoidosis. Clinical differentiation between granulomatous and non-granulomatous corneal endothelial exudates is crucial to subsequent diagnosis and treatment. Anterior segment optical coherence tomography (AS-OCT) can ensure an accurate differential diagnosis and appropriate follow-up after local and systemic therapy.

View Article and Find Full Text PDF

Background: Recently, deep learning has become a popular area of research, and has revolutionized the diagnosis and prediction of ocular diseases, especially fundus diseases. This study aimed to conduct a bibliometric analysis of deep learning in the field of ophthalmology to describe international research trends and examine the current research directions.

Methods: This cross-sectional bibliometric analysis examined the development of research on deep learning in the field of ophthalmology and its sub-topics from 2015 to 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!