Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The metallic-structure dependent localized surface plasmons (LSPs) coupling behaviors with InGaN QWs in a green LED epitaxial wafer are investigated by optical transmission, scanning electron microscopy (SEM) and photoluminescence (PL) measurements. Ag nanoparticles (NPs) are formed by thermal annealing Ag layer on the green LED wafer. SEM images show that for higher annealing temperature and/or thicker deposited Ag layer, larger Ag NPs can be produced, leading to the redshift of absorption peaks in the transmission spectra. Time resolved PL (TRPL) measurements indicate when LSP-MQW coupling occurs, PL decay rate is greatly enhanced especially at the resonant wavelength 560 nm. However, the PL intensity is suppressed by 3.5 folds compared to the bare LED. The resonant absorption and PL suppression are simulated by three dimension finite-difference-time-domain (FDTD), which suggests that Ag particle with smaller size and lower height lead to the larger dissipation of LSP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.012100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!