Strong enhancement of light absorption and highly directive thermal emission in graphene.

Opt Express

State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, PO Box 350, Chengdu 610209, China.

Published: May 2013

Graphene is a two-dimensional material with exotic electronic, optical and thermal properties. The optical absorption in monolayer graphene is limited by the fine structure constant α. Here we demonstrated the strong enhancement of light absorption and thermal radiation in homogeneous graphene. Numerical simulations show that the light absorbance can be controlled from near zero to 100% by tuning the Fermi energy. Moreover, a set of periodically located absorption peaks is observed at near grazing incidence. Based on this unique property, highly directive comb-like thermal radiation at near-infrared frequencies is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.011618DOI Listing

Publication Analysis

Top Keywords

strong enhancement
8
enhancement light
8
light absorption
8
highly directive
8
thermal radiation
8
absorption
4
absorption highly
4
thermal
4
directive thermal
4
thermal emission
4

Similar Publications

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

Advanced Markers for Hemodynamic Monitoring in Cardiogenic Shock and End-Stage Heart Failure: A Mini Review.

Heart Fail Rev

January 2025

Division of Cardiovascular Medicine, University of Utah Health & School of Medicine, 30 N Mario Capecchi Drive, HELIX Building 3rd Floor, Salt Lake City, UT, 84112, USA.

Right heart catheterization (RHC) provides critical hemodynamic insights by measuring atrial, ventricular, and pulmonary artery pressures, as well as cardiac output (CO). Although the use of RHC has decreased, its application has been linked to improved outcomes. Advanced hemodynamic markers such as cardiac power output (CPO), aortic pulsatility index (API), pulmonary artery pulsatility index (PAPi), right atrial pressure to pulmonary capillary wedge pressure ratio (RAP/PCWP) and right ventricular stroke work index (RVSWI) have been introduced to enhance risk stratification in cardiogenic shock (CS) and end-stage heart failure (HF) patients.

View Article and Find Full Text PDF

Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A.

View Article and Find Full Text PDF

Nanoporous graphene (NPG), laterally bonded carbon nanoribbons, is a promising platform for controlling coherent electron propagation in the nanoscale. However, for its successful device integration NPG should ideally be on a substrate that preserves or enhances its anisotropic transport properties. Here, using an atomistic tight-binding model combined with nonequilibrium Green's functions, we study NPG on graphene and show that their electronic coupling is modulated as a function of the interlayer twist angle.

View Article and Find Full Text PDF

Understanding cytokine-related therapeutic protein-drug interactions (TP-DI) is crucial for effective medication management in conditions characterized by elevated inflammatory responses. Recent FDA and ICH guidelines highlight a systematic, risk-based approach for evaluating these interactions, emphasizing the need for a thorough mechanistic understanding of TP-DIs. This study integrates the physiologically based pharmacokinetic (PBPK) model for TP (specifically interleukin-6, IL-6) with small-molecule drug PBPK models to elucidate cytokine-related TP-DI mechanistically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!