Electrospinning is a useful method for the production of nanofibrous scaffolds in the field of tissue engineering. Keratin has been used as a biomaterial for electrospinning and can be used in a variety of biomedical applications because it is a natural protein, giving it the ability to improve cell affinity of scaffolds. In this study, keratin was extracted from hagfish slime thread (H-keratin) and blended with polylactic acid (PLA) polymer solution to construct a nanofibrous scaffold. Wool keratin (W-keratin) was used as a control for the comparison of morphological, physical, and biological properties. The results of Fourier transform infrared spectroscopy showed the presence of both W-keratin and H-keratin in the electrospun PLA/keratin. Observations with a scanning electron microscope revealed that PLA, PLA/W-keratin, and PLA/H-keratin had similar average diameters (~800 nm). Cell attachment experiments showed that MG-63 cells adhered more rapidly and spread better onto PLA/H-keratin than onto the pure PLA or PLA/W-keratin. Cell proliferation assay, DNA content, live/dead, and alkaline phosphatase activity assays showed that PLA/H-keratin scaffolds could accelerate the viability, proliferation, and osteogenesis of MG-63 cells relative to pure PLA or PLA/W-keratin nanofibrous scaffolds. These findings suggest that H-keratin can improve cellular attraction and has great potential to be used as a biomaterial in bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-6041/8/4/045006DOI Listing

Publication Analysis

Top Keywords

pla pla/w-keratin
12
nanofibrous scaffold
8
nanofibrous scaffolds
8
tissue engineering
8
mg-63 cells
8
pure pla
8
pla
5
fabrication nanofibrous
4
scaffold pla
4
pla hagfish
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!