We compare established docking programs, AutoDock Vina and Schrödinger's Glide, to the recently published NNScore scoring functions. As expected, the best protocol to use in a virtual-screening project is highly dependent on the target receptor being studied. However, the mean screening performance obtained when candidate ligands are docked with Vina and rescored with NNScore 1.0 is not statistically different than the mean performance obtained when docking and scoring with Glide. We further demonstrate that the Vina and NNScore docking scores both correlate with chemical properties like small-molecule size and polarizability. Compensating for these potential biases leads to improvements in virtual screen performance. Composite NNScore-based scoring functions suited to a specific receptor further improve performance. We are hopeful that the current study will prove useful for those interested in computer-aided drug design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735370PMC
http://dx.doi.org/10.1021/ci400042yDOI Listing

Publication Analysis

Top Keywords

scoring functions
12
comparing neural-network
4
scoring
4
neural-network scoring
4
functions state
4
state art
4
art applications
4
applications common
4
common library
4
library screening
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!