AI Article Synopsis

  • TGF-β1 alone is not effective in promoting metastasis in non-invasive breast cancer cells but requires enhancement through additional stimuli like TLR4 ligand (LPS) and H₂O₂.
  • These combined stimuli boost the sustained activation of multiple signaling pathways (Smad and non-Smad), which is crucial for increasing the metastatic potential of these tumor cells.
  • The study suggests that targeting these pathways could be a promising strategy in cancer treatment, as enhanced TGF-β1 signaling leads to increased invasiveness and resistance to cell death in breast cancer cells.

Article Abstract

TGF-β1 has the potential to activate multiple signaling pathways required for inducing metastatic potential of tumor cells. However, TGF-β1 was inefficient in inducing metastatic potential of many non-invasive human tumor cells. Here we report that the enhancement of TGF-β1 signaling is required for inducing metastatic potential of non-invasive breast cancer cells. TGF-β1 alone could not efficiently induce the sustained activation of Smad and non-Smad pathways in non-invasive breast cancer cells. TLR4 ligand (LPS) and H₂O₂ cooperated with TGF-β1 to enhance the sustained activation of non-Smad pathways, including p38MAPK, ERK, JNK, PI3K, and NF-κB. The activation of MAPK and PI3K pathways resulted in a positive feed-back effect on TGF-β1 signaling by down-regulating Nm23-H1 expression and up-regulating the expression of TβRI and TβRII, favoring further activation of multiple signaling pathways. Moreover, the enhanced TGF-β1 signaling induced higher expression of SNAI2, which also promoted TβRII expression. Therefore, the sustained activation levels of both Smad and non-Smad pathways were gradually increased after prolonged stimulation with TGF-β1/H₂O₂/LPS. Consistent with the activation pattern of signaling pathways, the invasive capacity and anoikis-resistance of non-invasive breast cancer cells were gradually increased after prolonged stimulation with TGF-β1/H₂O₂/LPS. The metastatic potential induced by TGF-β1/H₂O₂/LPS was sufficient for tumor cells to extravasate and form metastatic foci in an experimental metastasis model in nude mice. The findings in this study suggested that the enhanced signaling is required for inducing higher metastatic capacity of tumor cells, and that targeting one of stimuli or signaling pathways might be potential approach in comprehensive strategy for tumor therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667026PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065906PLOS

Publication Analysis

Top Keywords

metastatic potential
20
tgf-β1 signaling
16
non-invasive breast
16
breast cancer
16
cancer cells
16
non-smad pathways
16
signaling pathways
16
tumor cells
16
potential non-invasive
12
required inducing
12

Similar Publications

Isthmoceles are defects related to Caesarean section (CS) scars, known to cause secondary infertility and interfere with in-vitro fertilization in women who have had Caesarean deliveries. The etiologies are multifactorial. Isthmoceles, similar to dehiscent CS scars, can be potential sites for ectopic pregnancies and abnormal placentation.

View Article and Find Full Text PDF

Mutations that overexpress the epidermal growth factor receptor (EGFR) are linked to cancers like breast (15-20%), head and neck (10-15%), colorectal (5-8%), and non-small cell lung cancer (10-50%), especially in East Asian populations. EGFR activation stimulates "RAS/RAF/MEK/ERK, PI3K/Akt, and MAPK" pathways, which enhance cell division, survival, angiogenesis, and tumor growth while inhibiting apoptosis and metastasis. Secondary mutations (e.

View Article and Find Full Text PDF

The Translation Initiation Factor eIF2Bα Regulates Development, Stress Response, Amylase Production, and Kojic Acid Synthesis in the Fungus Aspergillus oryzae.

Curr Microbiol

January 2025

Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China.

Translation initiation, which involves numerous protein factors and coordinated control steps, represents the most complicated process during eukaryotic translation. However, the roles of eukaryotic translation initiation factor (eIF) in filamentous fungi are not well clarified. In this study, we investigated the function of eIF2Bα in Aspergillus oryzae, an industrially important filamentous fungus.

View Article and Find Full Text PDF

Introduction: Laryngeal chondrosarcoma (CS) is a rare indolent malignant tumor. High-grade (G3), dedifferentiated (DD), and myxoid (MY) CSs are considered more aggressive subtypes due to their metastatic potential and relatively poor outcomes. The aim of this systematic review is to evaluate treatment modalities and survival outcomes in patients affected by these rarer CS subtypes.

View Article and Find Full Text PDF

The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!