In adult readers, letters, and words are rapidly identified within visual networks to allow for efficient reading abilities. Neuroimaging studies of orthography have mostly used words and letter strings that recruit many hierarchical levels in reading. Understanding how single letters are processed could provide further insight into orthographic processing. The present study investigated orthographic processing using single letters and pseudoletters when adults were encouraged to pay attention to or away from orthographic features. We measured evoked potentials (EPs) to single letters and pseudoletters from adults while they performed an orthographic-discrimination task (letters vs. pseudoletters), a color-discrimination task (red vs. blue), and a target-detection task (respond to #1 and #2). Larger and later peaking N1 responses (~170 ms) and larger P2 responses (~250 ms) occurred to pseudoletters as compared to letters. This reflected greater visual processing for pseudoletters. Dipole analyses localized this effect to bilateral fusiform and inferior temporal cortices. Moreover, this letter-pseudoletter difference was not modulated by task and thus indicates that directing attention to or away from orthographic features did not affect early visual processing of single letters or pseudoletters within extrastriate regions. Paying attention to orthography or color as compared to disregarding the stimuli (target-detection task) elicited selection negativities at about 175 ms, which were followed by a classical N2-P3 complex. This indicated that the tasks sufficiently drew participant's attention to and away from the stimuli. Together these findings revealed that visual processing of single letters and pseudoletters, in adults, appeared to be sensory-contingent and independent of paying attention to stimulus features (e.g., orthography or color).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659343 | PMC |
http://dx.doi.org/10.3389/fnhum.2013.00199 | DOI Listing |
Front Artif Intell
January 2025
Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Introduction: Generating physician letters is a time-consuming task in daily clinical practice.
Methods: This study investigates local fine-tuning of large language models (LLMs), specifically LLaMA models, for physician letter generation in a privacy-preserving manner within the field of radiation oncology.
Results: Our findings demonstrate that base LLaMA models, without fine-tuning, are inadequate for effectively generating physician letters.
Neurosci Bull
January 2025
CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
HLA
February 2025
Temple University Hospital Philadelphia, Philadelphia, Pennsylvania, USA.
The full-length sequence of HLA-DQB1*06:304N covers the 5'-untranslated region (UTR), all introns and exons, and the 3' UTR.
View Article and Find Full Text PDFJ Formos Med Assoc
January 2025
Nursing department, Shiyan Maternal and Child Health Hospital, Hubei, China. Electronic address:
HLA
January 2025
HLA and Histocompatibility Laboratory, CHRU de Nancy, Vandœuvre-lès-Nancy, France.
The new allele HLA-B*44:384 differs from HLA-B*44:02:01:01 by one non-synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!