Cyclooxygenase-2 deficiency in macrophages leads to defective p110γ PI3K signaling and impairs cell adhesion and migration.

J Immunol

Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Published: July 2013

Cyclooxygenase (Cox)-2 dependent PGs modulate several functions in many pathophysiological processes, including migration of immune cells. In this study, we addressed the role of Cox-2 in macrophage migration by using in vivo and in vitro models. Upon thioglycolate challenge, CD11b(+) F4/80(+) macrophages showed a diminished ability to migrate to the peritoneal cavity in cox-2(-/-) mice. In vivo migration of cox-2(-/-) macrophages from the peritoneal cavity to lymph nodes, as well as cell adhesion to the mesothelium, was reduced in response to LPS. In vitro migration of cox-2(-/-) macrophages toward MCP-1, RANTES, MIP-1α, or MIP-1β, as well as cell adhesion to ICAM-1 or fibronectin, was impaired. Defects in cell migration were not due to changes in chemokine receptor expression. Remarkably, cox-2(-/-) macrophages showed a deficiency in focal adhesion formation, with reduced phosphorylation of paxillin (Tyr(188)). Interestingly, expression of the p110γ catalytic subunit of PI3K was severely reduced in the absence of Cox-2, leading to defective Akt phosphorylation, as well as cdc42 and Rac-1 activation. Our results indicate that the paxillin/p110γ-PI3K/Cdc42/Rac1 axis is defective in cox-2(-/-) macrophages, which results in impaired cell adhesion and migration.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1202002DOI Listing

Publication Analysis

Top Keywords

cell adhesion
16
cox-2-/- macrophages
16
adhesion migration
8
peritoneal cavity
8
migration cox-2-/-
8
well cell
8
migration
7
macrophages
6
cell
5
adhesion
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!