Purpose: Salmonella enterica enterica encodes a variety of virulence factors. Among them, the type III secretion system (TTSS) encoded in the Salmonella pathogenicity islands (SPIs) is required for induction of proinflammatory responses, invasion of intestinal epithelial cells, induction of cell death in macrophages, and elicitation of diarrhea. The presence of the effector protein genes sopB, sopD, sopE, sopE2, avrA, and sptP of the SPIs was analyzed in 194 S. enterica enterica strains belonging to 19 serovars.
Methods: S. enterica enterica strains were collected from children with gastroenteritis, either hospitalized or attending the outpatient clinic, aged 1-14 years. Nineteen different serotypes were included in the study. Serotyping, biofilm formation determination, and antimicrobial resistance of the planktonic as well as the biofilm forms of the strains have been reported previously.
Results: At least one virulence gene was present in all Salmonella isolates. Biofilm formation was statistically independent of any of the six genes. Strains lacking sopE and sopE2 were more resistant to all the antimicrobials.
Conclusions: The association of the virulence genes with the antimicrobial resistance of Salmonella in general has been previously reported and is a matter of further investigation. For the clinical expression of pathogenicity in humans, the contribution of these genes is questionable, as some strains bearing only a single gene (either sptP or avrA) were still capable of causing gastroenteritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40291-013-0039-2 | DOI Listing |
Vet Res Commun
January 2025
Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.
Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Central European Institute of Technology, Masaryk University, Brno60200, Czech Republic.
Polymyxins, critical last-resort antibiotics, impact the distribution of membrane-bound divalent cations in the outer membrane of Gram-negative bacteria. We employed atomistic molecular dynamics simulations to model the effect of displacing these ions. Two polymyxin-sensitive and two polymyxin-resistant models of the outer membrane of were investigated.
View Article and Find Full Text PDFPoult Sci
January 2025
National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Pullorum disease (PD) is a widespread disease that causes significant economic losses within the poultry industry of developing countries. An effective strategy for its prevention and control involves the implementation of decontamination procedures utilizing highly specific on-site detection techniques. In this study, a single-nucleotide polymorphism (SNP) site within the group_17537 gene of Salmonella enterica serovar Gallinarum biovars Pullorum (S.
View Article and Find Full Text PDFFood Funct
January 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
serovar Typhimurium (STM) causes severe colitis, necessitating the development of effective drugs. Here, the dockings of limonin with the STM T3SS-1 virulence factor SopB or SopE2 showed strong binding activity and was verified by CETSA and DARTS assays . Limonin inhibited the enzyme activities and expression of SopB and SopE2 .
View Article and Find Full Text PDFBackground: The transmission of Salmonella spp. to human through the consumption of contaminated food products of animal origin, mainly poultry is a significant global public health concern. The emerging multidrug resistant (MDR) clones of non-typhoidal Salmonella (NTS) serovars, have spread rapidly worldwide both in humans and in the food chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!