In the present work, a laboratory scale corn-cob based biofilter inoculated with Bacillus sphaericus (MTCC 8103) was used for degradation of BTEX for a period of 86 days. The overall performance of a biofilter evaluated in terms of its elimination capacity by using 3-D mesh technique. Maximum removal efficiency was found more than 96.43% for all four compounds in each phase of experiments. A maximum elimination capacity (EC) of 60.89 gm(-3)h(-1) of the biofilter was obtained at inlet BTEX load of 63.14 gm(-3)h(-1). The follow-up of carbon dioxide concentration profile through the biofilter revealed that the mass ratio of carbon dioxide produced to the BTEX removed was approximately 2.2, which confirms complete degradation of BTEX. Moreover, BTEX concentration profile along the biofilter depth bed also determined by convection-diffusion reactor (CDR) model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2013.05.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!