The Pak4 protein kinase is required for oncogenic transformation of MDA-MB-231 breast cancer cells.

Oncogenesis

Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ, USA.

Published: June 2013

The Pak4 protein kinase, normally expressed at low level in the mammary gland, is commonly overexpressed in breast cancer. Overexpression of Pak4 transforms mouse mammary epithelial cells in vitro and renders these cells tumorigenic in athymic mice in vivo. Here we show that Pak4 is also required for oncogenic transformation of the human breast cancer cell line MDA-MB-231. These high Pak4-expressing human breast cancer cells form highly disorganized three-dimensional (3D) structures in vitro and readily give rise to orthotopic xenograft tumors in nude mice. We have found that when Pak4 levels are reduced, MDA-MB-231 cells exhibit decreased proliferation and migration in vitro, as well as gross restoration of normal 3D mammary acinar organization, the latter in association with a strong induction of apoptosis. Similarly, Pak4 knockdown suppresses MDA-MB-231 breast xenograft tumor formation in nude mice in vivo. These results indicate that Pak4 has a key role in the oncogenic transformation of breast cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740299PMC
http://dx.doi.org/10.1038/oncsis.2013.13DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
oncogenic transformation
12
pak4 protein
8
protein kinase
8
required oncogenic
8
mda-mb-231 breast
8
cancer cells
8
mice vivo
8
human breast
8
nude mice
8

Similar Publications

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

A pan-tumor review of the role of poly(adenosine diphosphate ribose) polymerase inhibitors.

CA Cancer J Clin

January 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.

Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors, such as olaparib, talazoparib, rucaparib, and niraparib, comprise a therapeutic class that targets PARP proteins involved in DNA repair. Cancer cells with homologous recombination repair defects, particularly BRCA alterations, display enhanced sensitivity to these agents because of synthetic lethality induced by PARP inhibitors. These agents have significantly improved survival outcomes across various malignancies, initially gaining regulatory approval in ovarian cancer and subsequently in breast, pancreatic, and prostate cancers in different indications.

View Article and Find Full Text PDF

Background: Papillary Thyroid Carcinoma (PTC) is the most common thyroid cancer, with an etiology and progression that are not fully understood. Research suggests a link between cathepsins and PTC, but the causal nature of this link is unclear. This study uses Mendelian Randomization (MR) to investigate if cathepsins causally influence PTC risk.

View Article and Find Full Text PDF

FDA Approves Inavolisib Combo for PIK3CA-Mutated, HR+ Breast Cancer.

Curr Med Chem

January 2025

Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.

View Article and Find Full Text PDF

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!