Convenient microwave-assisted synthesis of lipophilic sulfenamide prodrugs of metformin.

Eur J Pharm Sci

School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.

Published: July 2013

A convenient microwave-assisted synthesis of lipophilic sulfenamide prodrugs of antidiabetic agent, metformin, is reported in this study. These acyclic prodrugs were synthesized directly from selected disulfides with basic metformin and silver nitrate by a one-pot reaction under microwave irradiation. The prepared prodrugs had significantly increased lipophilicity, which resulted in excellent permeability of the octylthio prodrug of metformin across a Caco-2 cell monolayer. According to our preliminary in vivo studies, the octylthio prodrug was also absorbed mostly intact after oral administration in rats. In conclusion, this study shows that these types of more lipophilic sulfenamide prodrugs can be promising candidates to improve permeability and passive absorption of highly water-soluble metformin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2013.05.023DOI Listing

Publication Analysis

Top Keywords

lipophilic sulfenamide
12
sulfenamide prodrugs
12
convenient microwave-assisted
8
microwave-assisted synthesis
8
synthesis lipophilic
8
octylthio prodrug
8
prodrugs
5
metformin
5
prodrugs metformin
4
metformin convenient
4

Similar Publications

A convenient microwave-assisted synthesis of lipophilic sulfenamide prodrugs of antidiabetic agent, metformin, is reported in this study. These acyclic prodrugs were synthesized directly from selected disulfides with basic metformin and silver nitrate by a one-pot reaction under microwave irradiation. The prepared prodrugs had significantly increased lipophilicity, which resulted in excellent permeability of the octylthio prodrug of metformin across a Caco-2 cell monolayer.

View Article and Find Full Text PDF

The purpose of this work was to study the permeability of two relatively lipophilic sulfenamide prodrugs of linezolid (clogP 0.85), N-(phenylthio)linezolid (1, clogP 2.77) and N-[(2-ethoxycarbonyl)ethylthio]linezolid (2, clogP 1.

View Article and Find Full Text PDF

Metformin is a potent antidiabetic agent and currently used as a first-line treatment for patients with type 2 diabetes. Unfortunately, the moderate absorption and uncomfortable gastrointestinal adverse effects associated with metformin therapy impair its use. In this study, two novel prodrugs of a biguanidine functionality containing antidiabetic agent, metformin, were designed, synthesized, and evaluated in vitro and in vivo to accomplish improved lipophilicity and, consequently, enhanced oral absorption of this highly water-soluble drug.

View Article and Find Full Text PDF

Structure-activity relationship of omeprazole and analogues as Helicobacter pylori urease inhibitors.

J Med Chem

December 1995

Department of Medicinal Chemistry, Astra Hässle AB, Mölndal, Sweden.

Helicobacter pylori urease belongs to a family of highly conserved urea-hydrolyzing enzymes. A common feature of these enzymes is the presence of two Lewis acid nickel ions and a reactive cysteine residue in the active site. The H+/K(+)-ATPase inhibitor omeprazole is a prodrug of a sulfenamide which covalently modifies cysteine residues on the luminal side of the H+/K(+)-ATPase of gastric parietal cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!