Efferocytosis and lung disease.

Chest

Graduate Program in Immunology, VA Ann Arbor Healthcare System, Ann Arbor, MI; Division of Pulmonary and Critical Care Medicine, VA Ann Arbor Healthcare System, Ann Arbor, MI; Department of Internal Medicine, University of Michigan Health System; and the Pulmonary and Critical Care Medicine Section, VA Ann Arbor Healthcare System, Ann Arbor, MI. Electronic address:

Published: June 2013

In healthy individuals, billions of cells die by apoptosis each day. Clearance of these apoptotic cells, termed "efferocytosis," must be efficient to prevent secondary necrosis and the release of proinflammatory cell contents that disrupt tissue homeostasis and potentially foster autoimmunity. During inflammation, most apoptotic cells are cleared by macrophages; the efferocytic process actively induces a macrophage phenotype that favors tissue repair and suppression of inflammation. Several chronic lung diseases, particularly airways diseases such as chronic obstructive lung disease, asthma, and cystic fibrosis, are characterized by an increased lung burden of uningested apoptotic cells. Alveolar macrophages from individuals with these chronic airways diseases have decreased efferocytosis relative to alveolar macrophages from healthy subjects. These two findings have led to the hypothesis that impaired apoptotic cell clearance may contribute causally to sustained lung inflammation and that therapies to enhance efferocytosis might be beneficial. This review of the English-language scientific literature (2006 to mid-2012) explains how such existing therapies as corticosteroids, statins, and macrolides may act in part by augmenting apoptotic cell clearance. However, efferocytosis can also impede host defenses against lung infection. Thus, determining whether novel therapies to augment efferocytosis should be developed and in whom they should be used lies at the heart of efforts to differentiate specific phenotypes within complex chronic lung diseases to provide appropriately personalized therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673667PMC
http://dx.doi.org/10.1378/chest.12-2413DOI Listing

Publication Analysis

Top Keywords

apoptotic cells
12
lung disease
8
chronic lung
8
lung diseases
8
airways diseases
8
alveolar macrophages
8
apoptotic cell
8
cell clearance
8
lung
6
efferocytosis
5

Similar Publications

This study was designed to assess the effect of brentuximab vedotin on several breast cancer cell lines in terms of promoting apoptosis and managing cancer progression. Additionally, the study investigated the potential of repurposing this drug for new therapeutic reasons, beyond its original indications. The study evaluates the cytotoxic effects of Brentuximab vedotin across five cell lines: normal human skin fibroblasts (HSF), three breast cancer cell lines (MCF-7, MDA-MB-231, and T-47D), and histiocytic lymphoma (U-937).

View Article and Find Full Text PDF

Introduction: Hypoxia, a condition characterized by inadequate oxygen supply to tissues, triggers various cellular responses, including apoptosis. The RNA demethylase FTO has been shown to exert anti-apoptotic effects, but its functions independent of RNA demethylase-particularly those involving protein-protein interactions-during hypoxia remain unclear.

Objectives: This study aimed to elucidate the cytoprotective mechanism of FTO in preventing apoptosis under hypoxic stress.

View Article and Find Full Text PDF

TFEB activator protects against ethanol toxicity-induced cardiac injury by restoring mitophagy and autophagic flux.

Biochim Biophys Acta Mol Basis Dis

January 2025

College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:

Excessive alcohol consumption is a major cause of alcoholic cardiomyopathy (ACM) and myocardial injury. This study aims to investigate the role of transcription factor EB (TFEB) in ethanol-induced cardiac anomalies using a murine model, AC16 human cardiomyocytes, and human plasma. Wild-type mice treated with a TFEB activator (Compound 1) or vehicle (25 mg/kg/d) were challenged with or without ethanol (3 g/kg/d, i.

View Article and Find Full Text PDF

IGF1 enhances memory function in obese mice and stabilizes the neural structure under insulin resistance via AKT-GSK3β-BDNF signaling.

Biomed Pharmacother

January 2025

Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea. Electronic address:

Obesity is a prevalent metabolic disorder linked to insulin resistance, hyperglycemia, increased adiposity, chronic inflammation, and cognitive dysfunction. Recent research has focused on developing therapeutic strategies to mitigate cognitive impairment associated with obesity. Insulin growth factor-1 (IGF1) deficiency is linked to insulin resistance, glucose intolerance, and the progression of obesity-related central nervous system (CNS) disorders.

View Article and Find Full Text PDF

Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.

Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!