Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, the authors present a formal classification routine to characterize flaw severity in an aircraft-grade aluminum plate using Lamb waves. A rounded rectangle flat-bottom hole is incrementally introduced into the plate, and at each depth multi-mode Lamb wave signals are collected to study the changes in received signal due to mode conversion and scattering from the flaw. Lamb wave tomography reconstructions are used to locate and size the flaw at each depth, however information about the severity of the flaw is obscured when the flaw becomes severe enough that scattering effects dominate. The dynamic wavelet fingerprint is then used to extract features from the raw Lamb wave signals, and supervised pattern classification techniques are used to identify flaw severity with up to 80.7% accuracy for a training set and up to 51.7% accuracy on a series of validation data sets extracted from independent plate samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2013.04.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!