Artificial neural network modeling of p-cresol photodegradation.

Chem Cent J

Material Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.

Published: June 2013

Background: The complexity of reactions and kinetic is the current problem of photodegradation processes. Recently, artificial neural networks have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the non-linear relationships between variables in complex systems. In this study, an artificial neural network was applied for modeling p-cresol photodegradation. To optimize the network, the independent variables including irradiation time, pH, photocatalyst amount and concentration of p-cresol were used as the input parameters, while the photodegradation% was selected as output. The photodegradation% was obtained from the performance of the experimental design of the variables under UV irradiation. The network was trained by Quick propagation (QP) and the other three algorithms as a model. To determine the number of hidden layer nodes in the model, the root mean squared error of testing set was minimized. After minimizing the error, the topologies of the algorithms were compared by coefficient of determination and absolute average deviation.

Results: The comparison indicated that the Quick propagation algorithm had minimum root mean squared error, 1.3995, absolute average deviation, 3.0478, and maximum coefficient of determination, 0.9752, for the testing data set. The validation test results of the artificial neural network based on QP indicated that the root mean squared error was 4.11, absolute average deviation was 8.071 and the maximum coefficient of determination was 0.97.

Conclusion: Artificial neural network based on Quick propagation algorithm with topology 4-10-1 gave the best performance in this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680209PMC
http://dx.doi.org/10.1186/1752-153X-7-96DOI Listing

Publication Analysis

Top Keywords

artificial neural
20
neural network
16
quick propagation
12
root squared
12
squared error
12
coefficient determination
12
absolute average
12
modeling p-cresol
8
p-cresol photodegradation
8
propagation algorithm
8

Similar Publications

Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation.

View Article and Find Full Text PDF

Monitoring and assessing the level of lower limb motor skills using the Biodex System plays an important role in the training of football players and in post-traumatic rehabilitation. The aim of this study was to build and test an artificial intelligence-based model to assess the peak torque of the lower limb extensors and flexors. The model was based on real-world results in three groups: hearing ( = 19) and deaf football players ( = 28) and non-training deaf pupils ( = 46).

View Article and Find Full Text PDF

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics.

Anal Chem

January 2025

State Key Laboratory of Cellular Stress Biology, Institute of Artificial Intelligence, School of Life Sciences, Faculty of Medicine and Life Sciences, National Institute for Data Science in Health and Medicine, XMU-HBN skin biomedical research center, Xiamen University, Xiamen, Fujian 361102, China.

In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reliability and reproducibility of results. To address these challenges, we developed QuanFormer, a deep learning method based on object detection designed to accurately quantify peak signals.

View Article and Find Full Text PDF

Recurrent neural networks (RNNs) have emerged as a prominent tool for modeling cortical function, and yet their conventional architecture is lacking in physiological and anatomical fidelity. In particular, these models often fail to incorporate two crucial biological constraints: i) Dale's law, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!