Background: Tumor necrosis factor-α (TNF-α), a cytotoxic cytokine, induces endothelial cell barrier dysfunction and microvascular hyperpermeability, leading to tissue edema, a hallmark of traumatic injuries. The objective of the present study was to determine whether B-cell lymphoma-extra large (Bcl-xL), an antiapoptotic protein, would regulate and protect against TNF-α-mediated endothelial cell barrier dysfunction and microvascular hyperpermeability.

Methods: Rat lung microvascular endothelial cells were grown as monolayers on Transwell membranes, and fluorescein isothiocyanate-bovine albumin flux (5 mg/mL) across the monolayer was measured fluorometrically to indicate changes in monolayer permeability. The rat lung microvascular endothelial cell adherens junctional integrity and actin cytoskeleton was studied using β-catenin immunofluorescence and rhodamine phalloidin dye, respectively. Pretreatment of caspase-8 inhibitor (Z-IETD-FMK, 100 μM) for 1 hour and transfection of Bcl-2-homology domain 3-interacting domain death agonist small interfering RNA (10 μM) for 48 hours were performed to study their respective effects on TNF-α-induced (10 ng/mL; 1-hour treatment) monolayer permeability. Recombinant Bcl-xL protein (2.5 μg/ml) was transfected in rat lung microvascular endothelial cells for 1 hour, and its effect on permeability was demonstrated using a permeability assay. Caspase-3 activity was assayed fluorometrically.

Results: Z-IETD-FMK pretreatment protected the adherens junctions and decreased TNF-α-induced monolayer hyperpermeability. Bcl-2-homology domain 3-interacting domain death agonist small interfering RNA transfection attenuated the TNF-α-induced increase in monolayer permeability. Recombinant Bcl-xL protein showed protection against TNF-α-induced actin stress fiber formation, an increase in caspase-3 activity, and monolayer hyperpermeability.

Conclusions: Our results have demonstrated the protective effects of recombinant Bcl-xL protein against TNF-α-induced endothelial cell adherens junction damage and microvascular endothelial cell hyperpermeability. These findings support the potential for Bcl-xL-based drug development against microvascular hyperpermeability and tissue edema.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759616PMC
http://dx.doi.org/10.1016/j.jss.2013.04.079DOI Listing

Publication Analysis

Top Keywords

endothelial cell
24
microvascular endothelial
20
rat lung
12
lung microvascular
12
monolayer permeability
12
recombinant bcl-xl
12
bcl-xl protein
12
tumor necrosis
8
microvascular
8
endothelial
8

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!