Metabolically re-modeling the drug pipeline.

Curr Opin Pharmacol

School of Computer Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. Electronic address:

Published: October 2013

Costs for drug development have soared, exposing a clear need for new R&D strategies. Systems biology has meanwhile emerged as an attractive vehicle for integrating omics data and other post-genomic technologies into the drug pipeline. One of the emerging areas of computational systems biology is constraint-based modeling (CBM), which uses genome-scale metabolic models (GSMMs) as platforms for integrating and interpreting diverse omics datasets. Here we review current uses of GSMMs in drug discovery, focusing on prediction of novel drug targets and promising lead compounds. We then expand our discussion to prediction of toxicity and selectivity of potential drug targets. We discuss successes as well as limitations of GSMMs in these areas. Finally, we suggest new ways in which GSMMs may contribute to drug discovery, offering our vision of how GSMMs may re-model the drug pipeline in years to come.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.coph.2013.05.006DOI Listing

Publication Analysis

Top Keywords

drug pipeline
12
drug
8
systems biology
8
drug discovery
8
drug targets
8
gsmms
5
metabolically re-modeling
4
re-modeling drug
4
pipeline costs
4
costs drug
4

Similar Publications

NetSDR: Drug repurposing for cancers based on subtype-specific network modularization and perturbation analysis.

Biochim Biophys Acta Mol Basis Dis

January 2025

MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China. Electronic address:

Cancer, a heterogeneous disease, presents significant challenges for drug development due to its complex etiology. Drug repurposing, particularly through network medicine approaches, offers a promising avenue for cancer treatment by analyzing how drugs influence cellular networks on a systemic scale. The advent of large-scale proteomics data provides new opportunities to elucidate regulatory mechanisms specific to cancer subtypes.

View Article and Find Full Text PDF

Hidradenitis suppurativa is a chronic inflammatory disease characterised by painful, deep-seated nodules, abscesses, and draining tunnels in the skin of axillary, inguinal, genitoanal, or inframammary areas. In recent years, the body of knowledge in hidradenitis suppurativa has advanced greatly. This disorder typically starts in the second or third decade of life.

View Article and Find Full Text PDF

Ligand interaction landscape of transcription factors and essential enzymes in E. coli.

Cell

January 2025

Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:

Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.

View Article and Find Full Text PDF

Virtual screening: hope, hype, and the fine line in between.

Expert Opin Drug Discov

January 2025

Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, USA.

Introduction: Technological advancements in virtual screening (VS) have rapidly accelerated its application in drug discovery, as reflected by the exponential growth in VS-related publications. However, a significant gap remains between the volume of computational predictions and their experimental validation. This discrepancy has led to a rise in the number of unverified 'claimed' hits which impedes the drug discovery efforts.

View Article and Find Full Text PDF

AVP-GPT2: A Transformer-Powered Platform for De Novo Generation, Screening, and Explanation of Antiviral Peptides.

Viruses

December 2024

Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, China.

Human respiratory syncytial virus (RSV) remains a significant global health threat, particularly for vulnerable populations. Despite extensive research, effective antiviral therapies are still limited. To address this urgent need, we present AVP-GPT2, a deep-learning model that significantly outperforms its predecessor, AVP-GPT, in designing and screening antiviral peptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!