Costs for drug development have soared, exposing a clear need for new R&D strategies. Systems biology has meanwhile emerged as an attractive vehicle for integrating omics data and other post-genomic technologies into the drug pipeline. One of the emerging areas of computational systems biology is constraint-based modeling (CBM), which uses genome-scale metabolic models (GSMMs) as platforms for integrating and interpreting diverse omics datasets. Here we review current uses of GSMMs in drug discovery, focusing on prediction of novel drug targets and promising lead compounds. We then expand our discussion to prediction of toxicity and selectivity of potential drug targets. We discuss successes as well as limitations of GSMMs in these areas. Finally, we suggest new ways in which GSMMs may contribute to drug discovery, offering our vision of how GSMMs may re-model the drug pipeline in years to come.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.coph.2013.05.006 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China. Electronic address:
Cancer, a heterogeneous disease, presents significant challenges for drug development due to its complex etiology. Drug repurposing, particularly through network medicine approaches, offers a promising avenue for cancer treatment by analyzing how drugs influence cellular networks on a systemic scale. The advent of large-scale proteomics data provides new opportunities to elucidate regulatory mechanisms specific to cancer subtypes.
View Article and Find Full Text PDFLancet
January 2025
Faculty of Medicine, Wroclaw University of Science and Technology, Wrocław, Poland.
Hidradenitis suppurativa is a chronic inflammatory disease characterised by painful, deep-seated nodules, abscesses, and draining tunnels in the skin of axillary, inguinal, genitoanal, or inframammary areas. In recent years, the body of knowledge in hidradenitis suppurativa has advanced greatly. This disorder typically starts in the second or third decade of life.
View Article and Find Full Text PDFCell
January 2025
Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:
Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, USA.
Introduction: Technological advancements in virtual screening (VS) have rapidly accelerated its application in drug discovery, as reflected by the exponential growth in VS-related publications. However, a significant gap remains between the volume of computational predictions and their experimental validation. This discrepancy has led to a rise in the number of unverified 'claimed' hits which impedes the drug discovery efforts.
View Article and Find Full Text PDFViruses
December 2024
Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, China.
Human respiratory syncytial virus (RSV) remains a significant global health threat, particularly for vulnerable populations. Despite extensive research, effective antiviral therapies are still limited. To address this urgent need, we present AVP-GPT2, a deep-learning model that significantly outperforms its predecessor, AVP-GPT, in designing and screening antiviral peptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!