Naphthoxazole-based singlet oxygen fluorescent probes.

Photochem Photobiol

Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.

Published: June 2015

In this study, we report the synthesis and photochemical behavior of a new family of photoactive compounds to assess its potential as singlet oxygen ((1)O2) probes. The candidate dyads are composed by a (1)O2 trap plus a naphthoxazole moiety linked directly or through an unsaturated bond to the oxazole ring. In the native state, the inherent great fluorescence of the naphthoxazole moiety is quenched; but in the presence of (1)O2, generated by the addition and appropriate irradiation of an external photosensitizer, a photooxidation reaction occurs leading to the formation of a new chemical entity whose fluorescence is two orders of magnitude higher than that of the initial compound, at the optimal selected wavelength. The presented dyads outperform the commonly used indirect fluorescent (1)O2 probes in terms of fluorescence enhancement maintaining the required specificity for (1)O2 detection in solution.

Download full-text PDF

Source
http://dx.doi.org/10.1111/php.12106DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
8
1o2 probes
8
naphthoxazole moiety
8
1o2
5
naphthoxazole-based singlet
4
oxygen fluorescent
4
fluorescent probes
4
probes study
4
study report
4
report synthesis
4

Similar Publications

Photodynamic therapy combined with quaternized chitosan antibacterial strategy for instant and prolonged bacterial infection treatment.

Carbohydr Polym

March 2025

Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Drug-resistant bacterial infections represent a critical global public health challenge, driven largely by the misuse and overuse of antibiotics. Tackling the growing threat of bacterial resistance necessitates the development of innovative antibacterial agents that function independently of traditional antibiotics. In this study, novel antibacterial nano-micelles were rationally designed by conjugating quaternized chitosan with the photosensitizer chlorin e6.

View Article and Find Full Text PDF

Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.

View Article and Find Full Text PDF

The intricacy, diversity, and heterogeneity of cancers make research focus on developing multimodal synergistic therapy strategies. Herein, an oxygen (O) self-feeding peroxisomal lactate oxidase (LOX)-based LOX-Ce6-Mn (LCM) was synthesized using a biomineralization approach, which was used for cascade chemodynamic therapy (CDT)/photodynamic therapy (PDT) combination therapies through dual depletion of lactate (Lac) and reactive oxygen species (ROS) generation. After endocytosis into tumor cells, the endogenous hydrogen peroxide (HO) can be converted to O by the catalase-like (CAT) activity of LCM, which can facilitate the catalytic reaction of LOX to consume more Lac and alleviate tumor hypoxia to enhance the generation of singlet oxygen (O) upon light irradiation.

View Article and Find Full Text PDF

Photocatalytic detoxification of a sulfur mustard simulant using donor-enhanced porphyrin-based covalent-organic frameworks.

Nanoscale

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.

Photocatalytic detoxification of sulfur mustards (, bis (2-chloroethyl) sulfide, SM) is an effective approach for protecting the ecological environment and human health. In order to fabricate COFs with high performance for the selective transformation of the SM simulant 2-chloroethyl ethyl sulfide (CEES) to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO), three porphyrin-based COFs with different donor groups (R = H, OH, and OMe) were synthesized. Among these COFs, COF-OMe, which possesses the strongest electron-donating ability, demonstrated a faster and higher detoxification rate of CEES at various concentrations, achieving selective oxidation of CEES to non-toxic CEESO with 99.

View Article and Find Full Text PDF

Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!