The model species, Caenorhabditis elegans, has been used as a tool to probe for mechanisms underlying numerous neurodegenerative diseases. This use has been exploited to study neurodegeneration induced by metals. The allure of the nematode comes from the ease of genetic manipulation, the ability to fluorescently label neuronal subtypes, and the relative simplicity of the nervous system. Notably, C. elegans have approximately 60-80% of human genes and contain genes involved in metal homeostasis and transport, allowing for the study of metal-induced degeneration in the nematode. This review discusses methods to assess degeneration as well as outlines techniques for genetic manipulation and presents a comprehensive survey of the existing literature on metal-induced degeneration studies in the worm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657624PMC
http://dx.doi.org/10.3389/fnagi.2013.00018DOI Listing

Publication Analysis

Top Keywords

genetic manipulation
8
metal-induced degeneration
8
metal-induced neurodegeneration
4
neurodegeneration elegans
4
elegans model
4
model species
4
species caenorhabditis
4
caenorhabditis elegans
4
elegans tool
4
tool probe
4

Similar Publications

infection (CDI), characterized by colitis and diarrhea, afflicts approximately half a million people in the USA every year, burdening both individuals and the healthcare system. 630Δ is an erythromycin-sensitive variant of the clinical isolate 630 and is commonly used in the research community due to its genetic tractability. 630Δ possesses a point mutation in , an autoregulated transcriptional repressor that regulates oxidative stress resistance genes.

View Article and Find Full Text PDF

Current Approaches for Genetic Manipulation of spp.-Key Bacteria for Biotechnology and Environment.

BioTech (Basel)

January 2025

Valent BioSciences, Biorational Research Center, 1910 Innovation Way, Suite 100, Libertyville, IL 60048, USA.

Organisms from the genus feature actinobacteria with complex developmental cycles and a great ability to produce a variety of natural products. These soil bacteria produce more than 2/3 of antibiotics used in medicine, and a large variety of bioactive compounds for industrial, medical and agricultural use. Although spp.

View Article and Find Full Text PDF

Transcription coactivator YAP1 promotes CCND1/CDK6 expression, stimulating cell proliferation in cloned cattle placentas.

Zool Res

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.

Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.

View Article and Find Full Text PDF

Fungi and their natural products, like secondary metabolites, have gained a huge demand in the last decade due to their increasing applications in healthcare, environmental cleanup, and biotechnology-based industries. The fungi produce these secondary metabolites (SMs) during the different phases of their growth, which are categorized into terpenoids, alkaloids, polyketides, and non-ribosomal peptides. These SMs exhibit significant biological activity, which contributes to the formulation of novel pharmaceuticals, biopesticides, and environmental bioremediation agents.

View Article and Find Full Text PDF

Unveiling the signal valve specifically tuning the TGF-β1 suppression of osteogenesis: mediation through a SMAD1-SMAD2 complex.

Cell Commun Signal

January 2025

Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan.

Background: TGF-β1 is the most abundant cytokine in bone, in which it serves as a vital factor to interdict adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, how TGF-β1 concurrently manipulates differentiation into these two distinct lineages remains elusive.

Methods: Treatments with ligands or inhibitors followed by biochemical characterization, reporter assay, quantitative PCR and induced differentiation were applied to MSC line or primary BM-MSCs for signaling dissection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!