Malolactic fermentation (MLF) is a biochemical transformation conducted by lactic acid bacteria (LAB) that occurs in wine at the end of alcoholic fermentation. Oenococcus oeni is the main species responsible for MLF in most wines. As in other fermented foods, where bacteriophages represent a potential risk for the fermentative process, O. oeni bacteriophages have been reported to be a possible cause of unsuccessful MLF in wine. Thus, preparation of commercial starters that take into account the different sensitivities of O. oeni strains to different phages would be advisable. However, currently, no methods have been described to identify phages infecting O. oeni. In this study, two factors are addressed: detection and typing of bacteriophages. First, a simple PCR method was devised targeting a conserved region of the endolysin (lys) gene to detect temperate O. oeni bacteriophages. For this purpose, 37 O. oeni strains isolated from Italian wines during different phases of the vinification process were analyzed by PCR for the presence of the lys gene, and 25 strains gave a band of the expected size (1,160 bp). This is the first method to be developed that allows identification of lysogenic O. oeni strains without the need for time-consuming phage bacterial-lysis induction methods. Moreover, a phylogenetic analysis was conducted to type bacteriophages. After the treatment of bacteria with UV light, lysis was obtained for 15 strains, and the 15 phage DNAs isolated were subjected to two randomly amplified polymorphic DNA (RAPD)-PCRs. By combining the RAPD profiles and lys sequences, 12 different O. oeni phages were clearly distinguished.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754713PMC
http://dx.doi.org/10.1128/AEM.01307-13DOI Listing

Publication Analysis

Top Keywords

oeni bacteriophages
12
oeni strains
12
oeni
9
oenococcus oeni
8
randomly amplified
8
amplified polymorphic
8
polymorphic dna
8
lys gene
8
bacteriophages
6
strains
5

Similar Publications

Phage Encounters Recorded in CRISPR Arrays in the Genus .

Viruses

December 2022

UMR Oenologie 1366, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33882 Villenave d'Ornon, France.

The genus comprises four recognized species, and members have been found in different types of beverages, including wine, kefir, cider and kombucha. In this work, we implemented two complementary strategies to assess whether oenococcal hosts of different species and habitats were connected through their bacteriophages. First, we investigated the diversity of CRISPR-Cas systems using a genome-mining approach, and CRISPR-endowed strains were identified in three species.

View Article and Find Full Text PDF

Model microbial communities are often studied to better understand interactions and fluxes during fermentation processes. However, models that take into account the potential impact of bacteriophages (phages), which are recognized as drivers of microbial communities, are scarce, especially in fermented foods. This study aimed at investigating the behavior of a cider model microbial community, which was subjected to disturbance in the presence or absence of phages and at two different temperatures (25 °C and 15 °C).

View Article and Find Full Text PDF

Phage-host interactions as a driver of population dynamics during wine fermentation: Betting on underdogs.

Int J Food Microbiol

December 2022

UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, France. Electronic address:

Winemaking is a complex process in which numerous microorganisms, mainly yeasts and lactic acid bacteria (LAB), play important roles. After alcoholic fermentation (AF), most wines undergo malolactic fermentation (MLF) to improve their organoleptic properties and microbiological stability. Oenococcus oeni is mainly responsible for this crucial process where L-malic acid (MA) in wine converts to softer L-lactic acid.

View Article and Find Full Text PDF

After alcoholic fermentation, most wines undergo malolactic fermentation (MLF), driven by the lactic acid bacterium Oenococcus oeni, which improves their organoleptic properties and microbiological stability. Prophages were recently shown to be notably diverse and widely disseminated in O. oeni genomes.

View Article and Find Full Text PDF

The widespread existence of bacteriophage has been of great interest to the biological research community and ongoing investigations continue to explore their diversity and role. They have also attracted attention and in-depth research in connection to fermented food processing, in particular from the dairy and wine industries. Bacteriophage, mostly oenophage, may in fact be a 'double edged sword' for winemakers: whilst they have been implicated as a causal agent of difficulties with malolactic fermentation (although not proven), they are also beginning to be considered as alternatives to using sulphur dioxide to prevent wine spoilage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!