Biofilm medium leads to apatite formation on bioactive surfaces.

J Appl Biomater Funct Mater

Department of Periodontology, Institute of Dentistry, University of Turku, Turku - Finland and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku - Finland.

Published: September 2013

Purpose: When investigating apatite formation on biomaterial surfaces, simulated body fluid (SBF) is used as an in vitro solution, however, it does not provide an appropriate environment for the growth of bacterial biofilm. The aim of the present study was to compare the bioactivity in terms of apatite formation on two bioactive glass (BAG) composite surfaces using both SBF and bacterial-biofilm growing medium (BM).

Methods: Polymer composite substrates with different percentages of BAG-particles (50% and 75% by weight) were prepared. Plain resin substrates were used as a negative control. The substrates were immersed in SBF and BM for 3 days. The surface and, subsequently, the cross-sections of the substrates were examined with scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDS).

Results: All the investigated BAG-composite surfaces showed apatite formation after immersion in SBF and BM liquid media.

Conclusions: The use of BM is a promising method for studies involving simultaneous biofilm growth and apatite formation on bioactive surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.5301/JABFM.5000154DOI Listing

Publication Analysis

Top Keywords

apatite formation
20
formation bioactive
12
bioactive surfaces
8
apatite
5
formation
5
surfaces
5
biofilm medium
4
medium leads
4
leads apatite
4
surfaces purpose
4

Similar Publications

Enhanced mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO, YO, and AlO as sintering aids.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:

Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.

View Article and Find Full Text PDF

Hydroxyapatite Chitosan Gradient Pore Scaffold Activates Oxidative Phosphorylation Pathway to Induce Bone Formation.

Front Biosci (Landmark Ed)

January 2025

Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.

Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.

Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is widely used as a bone graft. However, information on the head-to-head osteoinductivity and in vivo performance of micro- and nanosized natural and synthetic HA is still lacking. Here, we fabricated nanosized bovine HA (nanoBHA) by using a wet ball milling method and compared its in vitro and in vivo performance with microsized BHA, nanosized synthetic HA (nanoHA), and microsized synthetic HA (HA).

View Article and Find Full Text PDF

A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms.

Proc Natl Acad Sci U S A

January 2025

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.

View Article and Find Full Text PDF

The repercussions of hormone replacement therapy (HRT) and bisphosphonates pose serious clinical challenges and warrant novel therapies for osteoporosis in menopausal women. To confront this issue, the present research aimed to design and fabricate daidzein (DZ); a phytoestrogen-loaded hydroxyapatite nanoparticles to mimic and compensate for synthetic estrogens and biomineralization. Hypothesizing this bimodal approach, hydroxyapatite nanoparticles (HAPNPs) were synthesized using the chemical-precipitation method followed by drug loading (DZHAPNPs) via sorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!