Ultrathin nanosheets are considered as one kind of the most promising candidates for the fabrication of flexible electrochromic devices (ECDs) due to their permeable channels, high specific surface areas, and good contact with the substrate. Herein, we first report the synthesis of large-area nanosheets of tungsten oxide dihydrate (WO3·2H2O) with a thickness of only about 1.4 nm, showing much higher Li(+) diffusion coefficients than those of the bulk counterpart. The WO3·2H2O ultrathin nanosheets are successfully assembled into the electrode of flexible electrochromic device, which exhibits wide optical modulation, fast color-switching speed, high coloration efficiency, good cyclic stability and excellent flexibility. Moreover, the electrochromic mechanism of WO3·2H2O is further investigated by first-principle density functional theory (DFT) calculations, in which the relationship between structural features of ultrathin nanosheets and coloration/bleaching response speed is revealed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669947PMC
http://dx.doi.org/10.1038/srep01936DOI Listing

Publication Analysis

Top Keywords

ultrathin nanosheets
16
flexible electrochromic
12
electrochromic device
8
wo3·2h2o ultrathin
8
nanosheets
5
high-performance flexible
4
electrochromic
4
device based
4
based facile
4
facile semiconductor-to-metal
4

Similar Publications

The performance of an optoelectronic device is largely dependent on the light harvesting properties of the active material as well as the dynamic behaviour of the photoexcited charge carriers upon absorption of light. Recently, atomically thin two-dimensional transition metal dichalcogenides (2D TMDCs) have garnered attention as highly prospective materials for advanced ultrathin solar cells and other optoelectronic applications, owing to their strong interaction with electromagnetic radiation, substantial optical conductivity, and impressive charge carrier mobility. WSe is one such extremely promising solar energy material.

View Article and Find Full Text PDF

Colloidal Design and Preparation of an Internal Electric Modulated Z-Scheme BiOI-CdS Heteronanostructure with Oxygen-Rich Vacancies.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.

Photoelectrochemical (PEC) water splitting offers an ideal strategy for the development of clean and renewable energy. However, its practical implementation is often inhibited by the high recombination rate of photogenerated charge carriers and the instability of photoanodes. Introducing defect engineering (such as oxygen vacancies) and constructing internal electric field-modulated Z-scheme heteronanostructures (HNs) can be considered as effective approaches to overcome these obstacles.

View Article and Find Full Text PDF

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery.

J Colloid Interface Sci

January 2025

School of Mechanical Engineering and Mechanics, School of Chemistry, Xiangtan University, Xiangtan 411105 PR China. Electronic address:

Developing insertion-type anodes is essential for designing high-performance "rocking chair" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling.

View Article and Find Full Text PDF

The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!