Rev-Erb-α and Rev-Erb-β are nuclear receptors that regulate the expression of genes involved in the control of circadian rhythm, metabolism and inflammatory responses. Rev-Erbs function as transcriptional repressors by recruiting nuclear receptor co-repressor (NCoR)-HDAC3 complexes to Rev-Erb response elements in enhancers and promoters of target genes, but the molecular basis for cell-specific programs of repression is not known. Here we present evidence that in mouse macrophages Rev-Erbs regulate target gene expression by inhibiting the functions of distal enhancers that are selected by macrophage-lineage-determining factors, thereby establishing a macrophage-specific program of repression. Remarkably, the repressive functions of Rev-Erbs are associated with their ability to inhibit the transcription of enhancer-derived RNAs (eRNAs). Furthermore, targeted degradation of eRNAs at two enhancers subject to negative regulation by Rev-Erbs resulted in reduced expression of nearby messenger RNAs, suggesting a direct role of these eRNAs in enhancer function. By precisely defining eRNA start sites using a modified form of global run-on sequencing that quantifies nascent 5' ends, we show that transfer of full enhancer activity to a target promoter requires both the sequences mediating transcription-factor binding and the specific sequences encoding the eRNA transcript. These studies provide evidence for a direct role of eRNAs in contributing to enhancer functions and suggest that Rev-Erbs act to suppress gene expression at a distance by repressing eRNA transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839578PMC
http://dx.doi.org/10.1038/nature12209DOI Listing

Publication Analysis

Top Keywords

gene expression
12
expression inhibiting
8
functions rev-erbs
8
direct role
8
role ernas
8
rev-erbs
6
expression
5
rev-erbs repress
4
repress macrophage
4
macrophage gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!