Fibroblast growth factor receptor 3 (FGFR3) is a single-pass membrane protein and a member of the receptor tyrosine kinase family of proteins that is involved in the regulation of skeletal growth and development. FGFR3 has three distinct domains: the ligand binding extracellular domain, the cytosolic kinase domain and the transmembrane domain (TMD). Previous work with the isolated FGFR3 TMD has shown that it has the ability to dimerize. Clinical and genetic studies have also correlated mutations in the TMD with a variety of skeletal and cranial dysplasias and cancer. Although the structures of the extracellular and cytosolic domains of FGFR3 have been solved, the structure of the TMD dimer is still unknown. Furthermore, very little is known regarding the effects of pathogenic mutations on the TMD dimer structure. We, therefore, carried out ToxR activity assays to determine the role of the SmXXXSm motif in the dimerization of the FGFR3 TMD. This motif has been shown to drive the association of many transmembrane proteins. Our results indicate that the interaction between wild-type FGFR3 TMDs is not mediated by two adjacent SmXXXSm motifs. In contrast, studies using the TMD carrying the pathogenic A391E mutation suggest that the motifs play a role in the dimerization of the mutant TMD. Based on these observations, here we report a new mechanistic model in which the pathogenic A391E mutation induces a structural change that leads to the formation of a more stable dimer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-013-9563-6DOI Listing

Publication Analysis

Top Keywords

pathogenic a391e
12
a391e mutation
12
induces structural
8
structural change
8
transmembrane domain
8
tmd
8
fgfr3 tmd
8
mutations tmd
8
tmd dimer
8
fgfr3
7

Similar Publications

The activity of receptor tyrosine kinases (RTKs) is controlled through their lateral association in the plasma membrane. RTKs are believed to form both homodimers and heterodimers, and the different dimers are believed to play unique roles in cell signaling. However, RTK heterodimers remain poorly characterized, as compared with homodimers, because of limitations in current experimental methods.

View Article and Find Full Text PDF

Mechanism of FGF receptor dimerization and activation.

Nat Commun

January 2016

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation.

View Article and Find Full Text PDF

Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors.

View Article and Find Full Text PDF

FGFR3 transmembrane domain interactions persist in the presence of its extracellular domain.

Biophys J

July 2013

Department of Materials Sciences and Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

Isolated receptor tyrosine kinase transmembrane (TM) domains have been shown to form sequence-specific dimers in membranes. Yet, it is not clear whether studies of isolated TM domains yield knowledge that is relevant to full-length receptors or whether the large glycosylated extracellular domains alter the interactions between the TM helices. Here, we address this question by quantifying the effect of the pathogenic A391E TM domain mutation on the stability of the fibroblast growth factor receptor 3 dimer in the presence of the extracellular domain and comparing these results to the case of the isolated TM fibroblast growth factor receptor 3 domains.

View Article and Find Full Text PDF

Fibroblast growth factor receptor 3 (FGFR3) is a single-pass membrane protein and a member of the receptor tyrosine kinase family of proteins that is involved in the regulation of skeletal growth and development. FGFR3 has three distinct domains: the ligand binding extracellular domain, the cytosolic kinase domain and the transmembrane domain (TMD). Previous work with the isolated FGFR3 TMD has shown that it has the ability to dimerize.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!