In vitro models of circulatory hemodynamics are required to mimic the microcirculation for study of endothelial cell responses to pulsatile shear stress by live cell imaging. This study reports the design, fabrication and characterisation of a microfluidic device that generates cardiac-like flow in a continuous culture system with a circulatory volume of only 2-3 μL. The device mimics a single chamber heart, with the following cardiac phases: (1) closure of the ventricle inlet valve, (2) contraction of the ventricle (systole) followed by opening of the outlet valve and (3) relaxation of the ventricle (diastole) with opening of the inlet valve whilst the outlet valve remains closed. Periodic valve states and ventricular contractions were actuated by microprocessor controlled pneumatics. The time-dependent velocity-field was characterised by micro-particle image velocimetry (μ-PIV). μ-PIV observations were used to help tune electronic timing of valve states and ventricular contractions for synthesis of an arterial pulse waveform to study the effect of pulsatile shear stress on bovine artery endothelial cells (BAECs). BAECs elongated and aligned with the direction of shear stress after 48 h of exposure to a pulsatile waveform with a maximum shear stress of 0.42 Pa. The threshold for BAECs alignment and elongation under steady (non-pulsatile) flow reported by Kadohama et al. (2006) is 0.7-1.4 Pa. These cells respond to transient shear stress because the time average shear stress of the pulse waveform to generate this morphological response was only 0.09 Pa, well below the steady flow threshold. The microfluidic pulse generator can simulate circulatory hemodynamics for live cell imaging of shear-induced signalling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3lc50123j | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.
Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.
View Article and Find Full Text PDFExcavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.
View Article and Find Full Text PDFJ Contemp Dent Pract
September 2024
Department of Academic, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru, ORCID: https://orcid.org/0000-0002-0594-5834.
Objective: To evaluate the shear strength of adhesives based on the type of solvent (ethanol and acetone), aged and light-cured using light-emitting diode (LED) units with different wavelengths. Polywave and monowave LED units were employed for this study.
Materials And Methods: Ninety bovine tooth samples were analyzed using OptiBond Universal adhesive (acetone) and single bond universal adhesive (ethanol).
J Contemp Dent Pract
September 2024
Department of Orthodontic, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
Aim: This study evaluates long-term shear bond strength (SBS) and enamel micro cracks (MCs) healing after using adhesive pre-coated brackets (APC).
Materials And Methods: A total of eighty extracted human premolar teeth were randomly divided into four experimental groups ( = 20 per group): Control group: Teeth underwent indentation but no bracket bonding; group II : Teeth were subjected to indentation without exposure to thermocycling; group III: Teeth experienced both indentation and thermocycling; group IV: No indentation was applied to the teeth; groups III and IV were further divided into two subgroups to simulate different clinical timelines: Subgroup A (n = 10): Teeth underwent 5,000 thermocycles, equivalent to six months of clinical use. Subgroup B (n = 10): Teeth were subjected to 10,000 thermocycles, representing 12 months of use.
Soft Matter
January 2025
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
Linking the macroscopic flow properties and nanoscopic structure is a fundamental challenge to understanding, predicting, and designing disordered soft materials. Under small stresses, these materials are soft solids, while larger loads can lead to yielding and the acquisition of plastic strain, which adds complexity to the task. In this work, we connect the transient structure and rheological memory of a colloidal gel under cyclic shearing across a range of amplitudes a generalized memory function using rheo-X-ray photon correlation spectroscopy (rheo-XPCS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!