Fabrication of hierarchical micro-nanotopographies for cell attachment studies.

Nanotechnology

The Nanotechnology Platform, Parc Científic Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain.

Published: June 2013

We report on the development of micro/nanofabrication processes to create hierarchical surface topographies that expand from 50 nm to microns in size on different materials. Three different approaches (named FIB1, FIB2, and EBL) that combine a variety of techniques such as photolithography, reactive ion etching, focused ion beam lithography, electron beam lithography, and soft lithography were developed, each one providing different advantages and disadvantages. The EBL approach was employed to fabricate substrates comprising channels with features between 200 nm and 10 μm in size on polymethylmethacrylate (PMMA), which were then used to investigate the independent or competitive effects of micro- and nanotopographies on cell adhesion and morphology. Rat mesenchymal stem cells (rMSCs) were cultured on four different substrates including 10 μm wide and 500 nm deep channels separated by 10 μm distances (MICRO), 200 nm wide and 100 nm deep nanochannels separated by 200 nm distances (NANO), their combination in parallel (PARAL), and in a perpendicular direction (PERP). Rat MSCs behaved differently on all tested substrates with a high degree of alignment (as measured by both number of aligned cells and average angle) on both NANO and MICRO. Furthermore, cells exhibited the highest level of alignment on PARAL, suggesting a synergetic effect of the two scales of topographies. On the other hand, cells on PERP exhibited the lowest alignment and a consistent change in morphology over time that seemed to be the result of interactions with both micro- and nanochannels positioned in the perpendicular direction, also suggesting a competitive effect of the topographies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/25/255305DOI Listing

Publication Analysis

Top Keywords

beam lithography
8
perpendicular direction
8
fabrication hierarchical
4
hierarchical micro-nanotopographies
4
micro-nanotopographies cell
4
cell attachment
4
attachment studies
4
studies report
4
report development
4
development micro/nanofabrication
4

Similar Publications

Optical neural implants allow neuroscientists to access deep brain regions, enabling to decipher complex patterns of neural activity. In this field, the use of optical fibers is rapidly increasing, and the ability to generate high-quality metal patterns on their non-planar surface would further extend their application. Here, we propose to use alternating metal shielding and dielectric confinement to engineer the mode-division properties of tapered optical fiber neural implants.

View Article and Find Full Text PDF

A fused-silica three-port grating under TE-polarized normal incidence is designed and manufactured with improved diffraction efficiency (DE) and bandwidth. A physical explanation of the grating diffraction is provided using the simplified mode method (SMM), and parameters of the grating structure were optimized using rigorous coupled-wave analysis (RCWA). For a given set of optimized parameters, a transmitted three-port grating with an area of 170 ×170 was fabricated by scanning beam interference lithography (SBIL), and diffraction properties were investigated.

View Article and Find Full Text PDF

In the pinhole point diffraction interferometer (PPDI), proper alignment between the reflection spot of the tested component and the pinhole is critical to obtain accurate interferograms. At present, adjusting for tilt error requires manual manipulation, and defocus error cannot be corrected. These limitations impede the instrumentation process of PPDI.

View Article and Find Full Text PDF

Single Rare-Earth Ion Doped Tin-Oxo Nanocluster Photoresists for High-Resolution Extreme Ultraviolet Lithography.

Nano Lett

January 2025

Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.

Rare-earth (RE) metals are known as industrial vitamins and show significant regulatory effects in many fields. In this work, we first demonstrated that the vitamin effect of RE metals can also be applied to extreme ultraviolet (EUV) lithography. Using a SnRE oxo cluster as the universal platform, different individual RE metal ions were successfully doped to obtain a series of isomorphic heterometallic clusters (RE = Y, Sm, Eu, Ho, Er).

View Article and Find Full Text PDF

Effect of Fabricating Process on the Performance of Two-Dimensional p-Type WSe Field Effect Transistors.

Nano Lett

January 2025

Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Two-dimensional (2D) transition metal dichalcogenides (TMDs), such as WSe, are promising candidates for next-generation integrated circuits. However, the dependence of intrinsic properties of TMD devices on various processing steps remains largely unexplored. Here, using pristine p-type WSe devices as references, we comprehensively studied the influence of each step in traditional nanofabrication methods on device performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!