Therapeutic strategies for the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) are actually minimally effective on patients' survival and quality of life. Although stem cell therapy has raised great expectations, information on the involved molecular mechanisms is still limited. Here we assessed the efficacy of the systemic administration of adipose-derived mesenchymal stem cells (ASC), a previously untested stem cell population, in superoxide-dismutase 1 (SOD1)-mutant transgenic mice, the animal model of familial ALS. The administration of ASC to SOD1-mutant mice at the clinical onset significantly delayed motor deterioration for 4-6 weeks, as shown by clinical and neurophysiological tests. Neuropathological examination of ASC-treated SOD1-mutant mice at day 100 (i.e. the time of their best motor performance) revealed a higher number of lumbar motorneurons than in phosphate-buffered saline-treated SOD1-mutant mice and a restricted number of undifferentiated green fluorescent protein-labeled ASC in the spinal cord. By examining the spinal cord tissue factors that may prolong neuronal survival, we found a significant up-regulation in levels of glial-derived neurotrophic factor (GDNF) and basic fibroblast growth factor (bFGF) after ASC treatment. Considering that ASC produce bFGF but not GDNF, these findings indicate that ASC may promote neuroprotection either directly and/or by modulating the secretome of local glial cells toward a neuroprotective phenotype. Such neuroprotection resulted in a strong and long-lasting effect on motor performance and encourages the use of ASC in human pathologies, in which current therapies are not able to maintain a satisfying neurological functional status.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2013.05.034DOI Listing

Publication Analysis

Top Keywords

sod1-mutant mice
12
adipose-derived mesenchymal
8
mesenchymal stem
8
stem cells
8
amyotrophic lateral
8
lateral sclerosis
8
stem cell
8
motor performance
8
spinal cord
8
asc
7

Similar Publications

Human VCP mutant ALS/FTD microglia display immune and lysosomal phenotypes independently of GPNMB.

Mol Neurodegener

November 2024

Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.

Article Synopsis
  • Microglia, the brain's immune cells, are vital for neuron health but may worsen conditions like ALS and FTD, and their exact role in these diseases is still unclear.
  • Researchers created specialized cultures of microglia from human stem cells with VCP mutations to study their behavior and effects on nearby nerve cells and supportive cells, using advanced techniques like RNA sequencing and proteomics.
  • The studies revealed that VCP mutant microglia show immune system and lysosomal issues, react differently to inflammation compared to healthy microglia, and can influence motor neurons and astrocytes through secreted factors, even though certain genetic factors didn't fully address their dysfunction.
View Article and Find Full Text PDF

Single-Cell RNA Sequencing Analysis of Microglia Dissected the Energy Metabolism and Revealed Potential Biomarkers in Amyotrophic Lateral Sclerosis.

Mol Neurobiol

July 2024

Department of Neurology, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, People's Republic of China.

Article Synopsis
  • ALS is a serious neurodegenerative disease that leads to motor neuron loss, but its causes and effective treatments are still not fully understood.
  • The study investigated genes significantly expressed in non-neuronal cells from ALS patients and correlated findings with data from ALS mice and patient blood, revealing key genes that may influence the disease.
  • Notably, certain genes like SOD1 and CALM1 showed potential as biomarkers, and the research highlights the important role of microglia and cellular interactions in the progression of ALS.
View Article and Find Full Text PDF

Epigenetic remodeling is emerging as a critical process for several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Genetics alone fails to explain the etiology of ALS, the investigation of the epigenome might therefore provide novel insights into the molecular mechanisms of the disease. In this study, we interrogated the epigenetic landscape in peripheral blood mononuclear cells (PBMCs) of familial ALS (fALS) patients with either chromosome 9 open reading frame 72 (C9orf72) or superoxide dismutase 1 (SOD1) mutation and aimed to identify key epigenetic footprints of the disease.

View Article and Find Full Text PDF

Unlabelled: Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder affecting brain and spinal cord motor neurons. Mutations in the copper/zinc superoxide dismutase gene ( ) are associated with ∼20% of inherited and 1-2% of sporadic ALS cases. Much has been learned from mice expressing transgenic copies of mutant SOD1, which typically involve high-level transgene expression, thereby differing from ALS patients expressing one mutant gene copy.

View Article and Find Full Text PDF

The concept of chelation therapy as a valuable therapeutic approach in neurological disorders led us to develop multi-target, non-toxic, lipophilic, brain-permeable compounds with iron chelation and anti-apoptotic properties for neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), age-related dementia and amyotrophic lateral sclerosis (ALS). Herein, we reviewed our two most effective such compounds, M30 and HLA20, based on a multimodal drug design paradigm. The compounds have been tested for their mechanisms of action using animal and cellular models such as APP/PS1 AD transgenic (Tg) mice, G93A-SOD1 mutant ALS Tg mice, C57BL/6 mice, Neuroblastoma × Spinal Cord-34 (NSC-34) hybrid cells, a battery of behavior tests, and various immunohistochemical and biochemical techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!