Unlabelled: Tistlia consotensis is a halotolerant Rhodospirillaceae that was isolated from a saline spring located in the Colombian Andes with a salt concentration close to seawater (4.5%w/vol). We cultivated this microorganism in three NaCl concentrations, i.e. optimal (0.5%), without (0.0%) and high (4.0%) salt concentration, and analyzed its cellular proteome. For assigning tandem mass spectrometry data, we first sequenced its genome and constructed a six reading frame ORF database from the draft sequence. We annotated only the genes whose products (872) were detected. We compared the quantitative proteome data sets recorded for the three different growth conditions. At low salinity general stress proteins (chaperons, proteases and proteins associated with oxidative stress protection), were detected in higher amounts, probably linked to difficulties for proper protein folding and metabolism. Proteogenomics and comparative genomics pointed at the CrgA transcriptional regulator as a key-factor for the proteome remodeling upon low osmolarity. In hyper-osmotic condition, T. consotensis produced in larger amounts proteins involved in the sensing of changes in salt concentration, as well as a wide panel of transport systems for the transport of organic compatible solutes such as glutamate. We have described here a straightforward procedure in making a new environmental isolate quickly amenable to proteomics.

Biological Significance: The bacterium Tistlia consotensis was isolated from a saline spring in the Colombian Andes and represents an interesting environmental model to be compared with extremophiles or other moderate organisms. To explore the halotolerance molecular mechanisms of the bacterium T. consotensis, we developed an innovative proteogenomic strategy consisting of i) genome sequencing, ii) quick annotation of the genes whose products were detected by mass spectrometry, and iii) comparative proteomics of cells grown in three salt conditions. We highlighted in this manuscript how efficient such an approach can be compared to time-consuming genome annotation when pointing at the key proteins of a given biological question. We documented a large number of proteins found produced in greater amounts when cells are cultivated in either hypo-osmotic or hyper-osmotic conditions. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2013.05.020DOI Listing

Publication Analysis

Top Keywords

saline spring
12
salt concentration
12
tistlia consotensis
8
isolated saline
8
colombian andes
8
mass spectrometry
8
genes products
8
salt
5
proteins
5
proteogenomic insights
4

Similar Publications

This long-term field study conducted in Yancheng, China, evaluated the effects of diverse crop rotation sequences on rice growth, yield, and soil properties. Six rotation treatments were implemented from 2016 to 2023 as follows: rice-wheat (control), rice-rape, rice-hairy vetch, rice-barley, rice-faba bean, and rice-winter fallow. Rice growth parameters, yield components, biomass accumulation, and soil properties were measured.

View Article and Find Full Text PDF

Oxidative stress impairs pigs' health and production performance. This study examined the effects of level and source of methionine (Met) supplementation against the diquat-induced oxidative stress in pigs. Forty growing barrows were randomly assigned to four groups.

View Article and Find Full Text PDF

Cyanobacteria are most abundant in aquatic systems and can grow in freshwater, saline or brackish water, and cold/hot springs. Cyanobacteria have attracted considerable research attention in the last decade as a potential source of numerous biological products in large quantities, such as biofuels, pigments, polyunsaturated fatty acids, nutraceuticals, enzymes, and polysaccharides. Unlike most plant and fungal polysaccharides, the chemical composition, immunomodulatory activity, and molecular mechanisms of action of Cyanobacterium sp.

View Article and Find Full Text PDF

In addition to the basic and main parts of hospital equipment, 316 L stainless steel is widely utilized in futures such as nails and screws, wires and medical bone clips, dental implants, heart springs (stents), needles, surgical scissors, etc. In the present study, the electrophoretic deposition of a composite based on chitosan (CS), gelatin, nano and microparticles of hydroxyapatite on a 316 L stainless steel substrate was investigated. Hydroxyapatite particles are added to it due to the ossification abilities of steel and due to an enhanced adhesion and bone production, CS and biocompatible gelatin polymer particles were also added to hydroxyapatite.

View Article and Find Full Text PDF

Cyclophilin (CyP) D is a regulator of the mitochondrial F-ATP synthase. Here we report the discovery of a form of CyPD lacking the first 10 (mouse) or 13 (human) N-terminal residues (ΔN-CyPD), a protein region with species-specific features. NMR studies on recombinant human full-length CyPD (FL-CyPD) and ΔN-CyPD form revealed that the N-terminus is highly flexible, in contrast with the rigid globular part.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!