Membrane targeting of the small myristoylated protein 2 (SMP-2) in Leishmania major.

Mol Biochem Parasitol

Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.

Published: July 2013

Leishmania parasites express three highly conserved small myristoylated proteins (SMPs) that are targeted to distinct membranes. SMP-1 is exclusively found in the flagellum, depending on myristoylation and palmitoylation. In contrast, monoacylated SMP-2 and SMP-4 are localized to the flagellar pocket and plasma membrane, respectively. Here, we demonstrate that unlike SMP-4, SMP-2 resides in detergent resistant membranes, but can be readily solubilized in the presence of high concentrations of salt. We provide evidence that in detergent resistant membranes, SMP-2 forms high molecular weight complexes in vivo. Association with detergent resistant membranes was abrogated in the presence of a C-terminal tag suggesting acylation independent targeting signals. In addition, the N-terminal region of SMP-2 contains sufficient information for membrane targeting, as a GFP-chimera localizes to the flagellar pocket. Thus while the core sequences of the SMPs are highly conserved, individual members have evolved different mechanisms for their diverse membrane localization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2013.05.005DOI Listing

Publication Analysis

Top Keywords

detergent resistant
12
resistant membranes
12
membrane targeting
8
small myristoylated
8
highly conserved
8
flagellar pocket
8
smp-2
5
membrane
4
targeting small
4
myristoylated protein
4

Similar Publications

Microorganisms, including pathogens that cause skin, respiratory, and urinary tract infections, are widespread in our environment. Despite routine cleaning with bleach and disinfectants, the transmission of pathogens still occurs, leading to potential infectious diseases. This study aimed to determine the antibacterial effect of two coating formulas against common environmental pathogens like , , , , sp.

View Article and Find Full Text PDF

Background:  To evaluate residual fibrinolysis resistance activity (FRA) in plasma, a detergent-modified plasma clot lysis assay time (dPCLT) was established in which α2-antiplasmin (A2AP) and plasminogen activator inhibitor type 1 (PAI-1) are inactivated without impacting protease activity. We applied this novel assay to severely injured trauma patients' plasma.

Material And Methods:  Tissue-type plasminogen activator (tPA)-induced plasma clot lysis assays were conducted after detergents- (dPCLT) or vehicle- (sPCLT) treatment, and time to 50% clot lysis was measured ("transition midpoint", T ).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with a wide range of clinical phenotypes. Pathologically, it is characterized by neuronal inclusions containing misfolded, fibrillar alpha-synuclein (aSyn). Prion-like properties of aSyn contribute to the spread of aSyn pathology throughout the nervous system as the disease progresses.

View Article and Find Full Text PDF

We report the synthesis of a series of detergents with a lactobionamide polar head group and a tail containing four to seven perfluorinated carbon atoms. Critical micellar concentrations (CMCs) were determined using isothermal titration calorimetry (ITC) and surface tension (SFT) measurements, showing a progressive decrease from 27 mM to about 0.2 mM across the series.

View Article and Find Full Text PDF

The widespread use of disinfectants and antiseptics has led to the emergence of nosocomial pathogens that are less sensitive to these agents, which in combination with multidrug resistance (MDR) can pose a significant epidemiologic risk. We investigated the susceptibility of nosocomial , , , and to a 0.05% chlorhexidine (CHX) solution and a biocidal S7 composite solution based on CHX (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!