High-fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner.

Free Radic Biol Med

Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.

Published: October 2013

Protein carbonylation is the covalent modification of proteins by α,β-unsaturated aldehydes produced by nonenzymatic lipid peroxidation of polyunsaturated fatty acids. The most widely studied aldehyde product of lipid peroxidation, trans-4-hydroxy-2-nonenal (4-HNE), is associated with obesity-induced metabolic dysfunction and has demonstrated reactivity toward key proteins involved in cellular function. However, 4-HNE is only one of many lipid peroxidation products and the lipid aldehyde profile in adipose tissue has not been characterized. To further understand the role of oxidative stress in obesity-induced metabolic dysfunction, a novel LC-MS/MS method was developed to evaluate aldehyde products of lipid peroxidation and applied to the analysis of adipose tissue. 4-HNE and trans-4-oxo-2-nonenal (4-ONE) were the most abundant aldehydes present in adipose tissue. In high fat-fed C57Bl/6J and ob/ob mice the levels of lipid peroxidation products were increased 5- to 11-fold in epididymal adipose, unchanged in brown adipose, but decreased in subcutaneous adipose tissue. Epididymal adipose tissue of high fat-fed mice also exhibited increased levels of proteins modified by 4-HNE and 4-ONE, whereas subcutaneous adipose tissue levels of these modifications were decreased. High fat feeding of C57Bl/6J mice resulted in decreased expression of a number of genes linked to antioxidant biology selectively in epididymal adipose tissue. Moreover, TNFα treatment of 3T3-L1 adipocytes resulted in decreased expression of GSTA4, GPx4, and Prdx3 while upregulating the expression of SOD2. These results suggest that inflammatory cytokines selectively downregulate antioxidant gene expression in visceral adipose tissue, resulting in elevated lipid aldehydes and increased protein carbonylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737572PMC
http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.030DOI Listing

Publication Analysis

Top Keywords

adipose tissue
36
lipid peroxidation
20
epididymal adipose
12
adipose
11
tissue
9
protein carbonylation
8
obesity-induced metabolic
8
metabolic dysfunction
8
peroxidation products
8
products lipid
8

Similar Publications

Mice with genetic ablation of PI3Kγ are protected from diet-induced obesity. However, the cell type responsible for PI3Kγ action in obesity remains unknown. We generated mice with conditional deletion of PI3Kγ in neurons using the nestin promoter to drive the expression of the Cre recombinase (PI3Kγ mice) and investigated their metabolic phenotype in a model of diet-induced obesity.

View Article and Find Full Text PDF

Intrapancreatic fat deposition (IPFD) has garnered increasing attention in recent years. The prevalence of IPFD is relatively high and associated with factors such as obesity, age, and sex. However, the pathophysiological mechanisms underlying IPFD remain unclear, with several potential contributing factors, including oxidative stress, alterations in the gut microbiota, and hormonal imbalances.

View Article and Find Full Text PDF

Inflammatory bowel disease, particularly Crohn's disease (CD), has been linked to modifications in mesenteric adipose tissue (MAT) and the phenomenon known as "creeping fat" (CrF). The presence of CrF is believed to serve as a predictor for early clinical recurrence following surgical intervention in patients with CD. Notably, the incorporation of the mesentery during ileocolic resection for CD has been correlated with a decrease in surgical recurrence, indicating the significant role of MAT in the pathogenesis of CD.

View Article and Find Full Text PDF

The integration of exercise prescriptions into cancer adjuvant therapy presents challenges stemming from the ambiguity surrounding the precise mechanism through which exercise intervention mitigates the risk of hepatocellular carcinoma (HCC) mortality and recurrence. Elucidation of this specific mechanism has substantial social and clinical implications. In this study, tumor-bearing mice engaged in voluntary wheel running exhibited a notable decrease in tumor growth, exceeding 30%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!