Renal cell carcinoma (RCC) is characterized by high vascular endothelial growth factor (VEGF) production and, consequently, excessive angiogenesis. Several strategies have been developed to target angiogenesis as a method for treating metastatic RCC (mRCC). Endostatin (ES) is a C-terminal fragment of collagen XVIII that has antiangiogenic activity. The aim of this study was to investigate the predictive value of circulating VEGF-A in a murine model of mRCC after ES gene therapy. ES therapy did not affect the levels of collagen XVIII/ES or ES in the tissue. The circulating level of ES was increased in the control and ES-treated groups (normal vs. control, P<0.05 and ES-treated vs. control, P<0.001), and the intratumoral vessels were significantly decreased (ES-treated vs. control, P<0.05). ES therapy decreased the VEGF mRNA levels. The tissue and circulating levels of VEGF in the control group were significantly higher than normal (P<0.01 and P<0.05, respectively). Treatment with ES significantly reduced the VEGF concentrations in both compartments (P<0.001 for tissue and P<0.05 for plasma). Our findings indicate that in addition to the directly targeted tumor vessels, ES exerts its antitumor effect by down-regulating VEGF gene expression in renal tumor cells. Additionally, our findings point to the predictive value of VEGF for ES therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2013.04.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!