In this study, the seasonal variations in the morphometric features and in the cellular and biochemical parameters of the haemolymph were investigated in both male and female crabs (Carcinus aestuarii). Crabs were seasonally (November 2010-August 2011) collected from the Lagoon of Venice, and the moult stage, weight, width and length of the carapace, and width and length of the bigger chela were evaluated. In addition, the total haemocyte count (THC), haemocyte diameter and volume, haemolymph glucose and total protein levels, and haemolymph phenoloxidase (PO) and N-acetyl-β-glucosaminidase (NAG) activities were measured. The results demonstrated that the collected crabs were all in the intermoult stage and that the males were bigger than the females. A two-way ANOVA revealed a significant effect of season on the THC and the haemocyte volume and a significant influence of gender on the haemocyte diameter. Season and gender significantly affected the haemolymph glucose concentration, whereas haemolymph protein levels were dependent only on the season. In addition, both season and gender significantly influenced the PO and NAG activities in the haemolymph. Overall, the results demonstrated that crab morphometric features as well as haemolymph cellular and biochemical parameters varied markedly as a function of both season and gender.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2013.04.007 | DOI Listing |
J Anat
January 2025
Department of Anthropology, Stony Brook University, Stony Brook, New York, USA.
Anterior-posterior (A-P) elongation of the palate is a critical aspect of integrated midfacial morphogenesis. Reciprocal epithelial-mesenchymal interactions drive secondary palate elongation that is coupled to the periodic formation of signaling centers within the rugae growth zone (RGZ). However, the relationship between RGZ-driven morphogenetic processes, the differentiative dynamics of underlying palatal bone mesenchymal precursors, and the segmental organization of the upper jaw has remained enigmatic.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are distinct demyelinating diseases of the central nervous system, each characterized by unique patterns of motor, sensory, and visual dysfunction. While MS typically affects the brain and spinal cord, NMOSD predominantly targets the optic nerves and spinal cord. This study aims to elucidate the morphometric differences between MS and NMOSD by focusing on gray matter volume changes in specific brain regions.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan.
This study presents a novel method for creating customized brain slice matrices using Computer-Aided Design (CAD) and 3D printing technology. Brain Slice Matrices are essential jigs for the reproducible preparation of brain tissue sections in neuroscience research. Our approach leverages the advantages of 3D printing, including design flexibility, cost-effectiveness, and rapid prototyping, to produce custom-made brain matrices based on specific morphometric measurements.
View Article and Find Full Text PDFSurg Radiol Anat
January 2025
Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA.
Purpose: The aim of this study is to determine the exact locations of vascular pedicles that supply the fibularis longus and brevis, to identify the morphometric features of those vessels in the lateral compartment of the leg, and to indicate the branching points of the pedicles from the main arteries.
Methods: The popliteal arteries of 40 lower limbs from 20 adult cadavers (12 males, 8 females) were bilaterally injected with colored latex. After dissection, the branches of the arteries were identified and counted.
Nat Commun
January 2025
Princess Margaret Cancer Centre, 101 College Street, Toronto, ON, Canada.
Deep learning has proven capable of automating key aspects of histopathologic analysis. However, its context-specific nature and continued reliance on large expert-annotated training datasets hinders the development of a critical mass of applications to garner widespread adoption in clinical/research workflows. Here, we present an online collaborative platform that streamlines tissue image annotation to promote the development and sharing of custom computer vision models for PHenotyping And Regional Analysis Of Histology (PHARAOH; https://www.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!