Effects of elevated CO2 leaf diets on gypsy moth (Lepidoptera: Lymantriidae) respiration rates.

Environ Entomol

USDA Forest Service, Northern Research Station, Institute of Applied Ecosystem Studies, 5985 Highway K, Rhinelander WI 54501, USA.

Published: June 2013

Elevated levels of CO2 affect plant growth and leaf chemistry, which in turn can alter host plant suitability for insect herbivores. We examined the suitability of foliage from trees grown from seedlings since 1997 at Aspen FACE as diet for the gypsy moth (Lymantria dispar L.) Lepidoptera: Lymantriidae: paper birch (Betula papyrifera Marshall) in 2004-2005, and trembling aspen (Populus tremuloides Michaux) in 2006-2007, and measured consequent effects on larval respiration. Leaves were collected for diet and leaf chemistry (nutritional and secondary compound proxies) from trees grown under ambient (average 380 ppm) and elevated CO2 (average 560 ppm) conditions. Elevated CO2 did not significantly alter birch or aspen leaf chemistry compared with ambient levels with the exception that birch percent carbon in 2004 and aspen moisture content in 2006 were significantly lowered. Respiration rates were significantly higher (15-59%) for larvae reared on birch grown under elevated CO2 compared with ambient conditions, but were not different on two aspen clones, until larvae reached the fifth instar, when those consuming elevated CO2 leaves on clone 271 had lower (26%) respiration rates, and those consuming elevated CO2 leaves on clone 216 had higher (36%) respiration rates. However, elevated CO2 had no apparent effect on the respiration rates of pupae derived from larvae fed either birch or aspen leaves. Higher respiration rates for larvae fed diets grown under ambient or elevated CO2 demonstrates their lower efficiency of converting chemical energy of digested food stuffs extracted from such leaves into their biosynthetic processes.

Download full-text PDF

Source
http://dx.doi.org/10.1603/EN12074DOI Listing

Publication Analysis

Top Keywords

elevated co2
32
respiration rates
24
leaf chemistry
12
co2
9
gypsy moth
8
lepidoptera lymantriidae
8
elevated
8
rates elevated
8
trees grown
8
grown ambient
8

Similar Publications

It is crucial to elucidate the impact of climate change on wheat production in China. This article provides a review of the current climate change scenario and its effects on wheat cultivation in China, along with an examination of potential future impacts and possible response strategies. Against the backdrop of climate change, several key trends emerge: increasing temperature during the wheat growing season, raising precipitation, elevated CO concentration, and diminished radiation.

View Article and Find Full Text PDF

Carbon Dioxide Upgrading to Biodegradable Plastics through Photo/Electro-Synthetic Biohybrid Systems.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

The escalating emissions of anthropogenic carbon dioxide (CO) and the pervasive issue of nondegradable plastic pollution underscore dual urgent challenges in pursuit of a sustainable society. Achieving such sustainability in the plastic industry, while effectively addressing these environmental concerns, necessitates the development and implementation of innovative strategies for the synthesis of biodegradable polymers utilizing CO as feedstocks. The technologies not only facilitate the mitigation of elevated atmospheric CO concentrations but also introduce a renewable carbon resource for polymer manufacturing.

View Article and Find Full Text PDF

Herbivorous insects need to cope with changing host plant biochemistry caused by abiotic and biotic impacts, to meet their dietary requirements. Larvae of the multivoltine European grapevine moth Lobesia botrana, one of the main insect pests in viticulture, feed on both flowers and berries. The nutritional value and defence compounds of these organs are changing with plant phenology and are affected by climate change which may accordingly alter plant-insect interactions.

View Article and Find Full Text PDF

Nitrogen Assimilation Plays a Role in Balancing the Chloroplastic Glutathione Redox Potential Under High Light Conditions.

Plant Cell Environ

January 2025

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-E) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1).

View Article and Find Full Text PDF

Increasing atmospheric CO levels have a variety of effects that can influence plant responses to microbial pathogens. However, these responses are varied, and it is challenging to predict how elevated CO (eCO) will affect a particular plant-pathogen interaction. We investigated how eCO may influence disease development and responses to diverse pathogens in the major oilseed crop, soybean.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!