The influence of hyperosmotic stress on glucose uptake, handling, and signaling processes remains unclear in mammalian skeletal muscle. Thus, the purpose of this study was to investigate alterations in glucose uptake and handling during extracellular hyperosmotic stress in isolated fast-twitch mammalian skeletal muscle. Using an established in vitro isolated whole-muscle model, extensor digitorum longus (EDL) muscles were dissected from male rats (4-6 weeks of age) and incubated (30-60 min) in an organ bath, containing Sigma Medium-199 with 8 mmol·L(-1) D-glucose, and mannitol was added to the targeted osmolalities (ISO, iso-osmotic, 290 mmol·kg(-1); HYPER, hyperosmotic, 400 mmol·kg(-1)). Results demonstrate that relative water content decreased in HYPER. HYPER resulted in significant alterations in muscle metabolite concentrations (lower glycogen, elevated lactate, and glucose-6-phosphate), suggesting a decrease in energy charge. Glucose uptake was also found to be higher in HYPER, and AS160 (implicated in insulin- and contraction-mediated glucose uptake) was found to be significantly more phosphorylated in HYPER than in ISO after 30 min. In conclusion, glucose uptake and handling is altered with hyperosmotic extracellular stress in the fast-twitch EDL. The increases in glucose uptake might be facilitated through alterations in AS160 signaling after 30 to 60 min of osmotic stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/apnm-2012-0236 | DOI Listing |
J Immunother Cancer
January 2025
Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.
View Article and Find Full Text PDFNeuroscience
January 2025
Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China. Electronic address:
Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O and 5 % CO).
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, 130 Changjiang West Rd., Hefei 230036, PR China.
Skeletal muscle satellite cells (SMSCs) are critical for postnatal skeletal muscle growth and regeneration. Adiponectin plays a pivotal role in regulating muscle glucose uptake and fatty acid metabolism. However, its function in the proliferation and differentiation of chicken SMSCs remains poorly understood.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France. Electronic address:
Translational neuroimaging techniques are needed to address the impact of opioid tolerance on brain function and quantitatively monitor the impaired neuropharmacological response to opioids at the CNS level. A multiparametric PET study was conducted in rats. Rats received morphine daily to induce tolerance (15 mg/kg/day for 5 days), followed by 2-day withdrawal.
View Article and Find Full Text PDFOpen Med (Wars)
January 2025
Department of Obstetrical, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, Zhejiang, 325000, China.
Gestational diabetes mellitus (GDM), defined as glucose intolerance occurring or first detected during pregnancy, affects approximately 8% of pregnancies worldwide. The dysfunction of trophoblasts in pregnancies complicated by GDM is associated with changes in trophoblast cell functions, resulting in compromised proliferation and regulation of the cell cycle. Cyclin B1 (CCNB1), a pivotal controller of the start of mitosis, is crucial in these mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!