Are patients with inflammatory eye disease treated with systemic immunosuppressive therapy at increased risk of malignancy?

J Ophthalmic Inflamm Infect

Inflammation Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

Published: May 2013

The purpose of this study is to review the literature on the risk of malignancy in patients with inflammatory eye disease (IED) treated with systemic immunosuppressive (IS) therapy. Relevant databases in transplant medicine, autoimmune diseases and literature regarding uveitis and scleritis were reviewed. Literature with regards systemic IS therapy in transplant recipients and patients with autoimmune diseases revealed a significant increase in malignancies, especially non-melanocytic skin cancers and lymphomas. Studies of patients with IED were limited in number and scope, with no studies adequately evaluating the incidence of malignancy in these patients. Difficulties associated with the evaluation of the risk of malignancy associated with IS therapy in patients with IED include the heterogeneity of the disease and treatment regimens as well as the low frequency of IED, its variable severity and the lack of adequate long-term follow-up studies. Systemic IS therapy is an important therapeutic option in the treatment of patients with severe IED. A well-designed, comprehensive, multi-centre long-term follow-up study is required to evaluate the risk of malignancy in patients with specific IED diseases treated with defined systemic IS therapy. Until such evidence is available, we recommend the adoption of preventative strategies to help minimise the risk of malignancy in such patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695808PMC
http://dx.doi.org/10.1186/1869-5760-3-48DOI Listing

Publication Analysis

Top Keywords

risk malignancy
16
malignancy patients
16
systemic therapy
12
patients
9
patients inflammatory
8
inflammatory eye
8
eye disease
8
treated systemic
8
systemic immunosuppressive
8
immunosuppressive therapy
8

Similar Publications

Clonal hematopoiesis of indeterminate potential (CHIP) is a condition where blood or bone marrow cells carry mutations associated with hematological malignancies. Individuals with CHIP have an increased risk of developing hematological malignancies, atherosclerotic cardiovascular disease, and all-cause mortality. Bone marrow transplantation (BMT) of cells carrying CHIP mutations into irradiated mice are useful procedures to investigate the dynamics of clonal expansion and potential therapeutic strategies, but myeloablative conditioning can induce confounding effects.

View Article and Find Full Text PDF

Background: Chemotherapy is a well-established therapeutic approach for several malignancies, including breast cancer (BCa). However, the clinical efficacy of this drug is limited by cardiotoxicity. Assessing multiple cardiac biomarkers can help identify patients at risk of adverse outcomes from chemotherapy.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations, all leading to excessive proliferation of malignant blood cells in the bone marrow. Tumor heterogeneity due to the acquisition of new somatic alterations leads to a high rate of resistance to current therapies or reduces the efficacy of hematopoietic stem cell transplantation (HSCT), thus increasing the risk of relapse and mortality. Single-cell RNA sequencing (scRNA-seq) will enable the classification of AML and guide treatment approaches by profiling patients with different facets of the same disease, stratifying risk, and identifying new potential therapeutic targets at the time of diagnosis or after treatment.

View Article and Find Full Text PDF

Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.

JMIRx Med

January 2025

Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.

Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.

View Article and Find Full Text PDF

Integrating multiomics analysis and machine learning to refine the molecular subtyping and prognostic analysis of stomach adenocarcinoma.

Sci Rep

January 2025

Department of Traditional Chinese Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, People's Republic of China.

Stomach adenocarcinoma (STAD) is a common malignancy with high heterogeneity and a lack of highly precise treatment options. We downloaded the multiomics data of STAD patients in The Cancer Genome Atlas (TCGA)-STAD cohort, which included mRNA, microRNA, long non-coding RNA, somatic mutation, and DNA methylation data, from the sxdyc website. We synthesized the multiomics data of patients with STAD using 10 clustering methods, construct a consensus machine learning-driven signature (CMLS)-related prognostic models by combining 10 machine learning methods, and evaluated the prognosis models using the C-index.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!