Human-induced biotic homogenization resulting from landscape change and increased competition from widespread generalists or 'winners', is widely recognized as a global threat to biodiversity. However, it remains unclear what aspects of landscape structure influence homogenization. This paper tests the importance of interspecific competition and landscape structure, for the spatial homogeneity of avian assemblages within a fragmented agricultural landscape of eastern Australia. We used field observations of the density of 128 diurnal bird species to calculate taxonomic and functional similarity among assemblages. We then examined whether taxonomic and functional similarity varied with patch type, the extent of woodland habitat, land-use intensity, habitat subdivision, and the presence of Manorina colonies (a competitive genus of honeyeaters). We found the presence of a Manorina colony was the most significant factor positively influencing both taxonomic and functional similarity of bird assemblages. Competition from members of this widespread genus of native honeyeater, rather than landscape structure, was the main cause of both taxonomic and functional homogenization. These species have not recently expanded their range, but rather have increased in density in response to agricultural landscape change. The negative impacts of Manorina honeyeaters on assemblage similarity were most pronounced in landscapes of moderate land-use intensity. We conclude that in these human-modified landscapes, increased competition from dominant native species, or 'winners', can result in homogeneous avian assemblages and the loss of specialist species. These interacting processes make biotic homogenization resulting from land-use change a global threat to biodiversity in modified agro-ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665551 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065299 | PLOS |
Nat Commun
January 2025
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
WNT/β-catenin signaling plays key roles in development and cancer. ZNRF3/RNF43 modulates Frizzleds through ubiquitination, dampening WNT/β-catenin signaling. Conversely, RSPO1-4 binding to LGR4-6 and ZNRF3/RNF43 enhances WNT/β-catenin signaling.
View Article and Find Full Text PDFCell
December 2024
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address:
Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues.
View Article and Find Full Text PDFEBioMedicine
January 2025
Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China. Electronic address:
Background: Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia with restrictive ventilation. Recently, the structural and functional defects of small airways have received attention in the early pathogenesis of IPF. This study aimed to elucidate the characteristics of small airway epithelial dysfunction in patients with IPF and explore novel therapeutic interventions to impede IPF progression by targeting the dysfunctional small airways.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Crop Production and Landscape Management, Ebonyi State University, Abakaliki, Nigeria.
Background: Sweetpotato is a vegetatively propagated crop cultivated worldwide, predominantly in developing countries, valued for its adaptability, short growth cycle, and high productivity per unit land area. In most sub-Saharan African (SSA) countries, it is widely grown by smallholder farmers. Niger, Nigeria, and Benin have a huge diversity of sweetpotato accessions whose potential has not fully been explored to date.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517619, India.
Although impurities are unavoidable in real-world and experimental systems, most numerical studies on nucleation focus on pure (impurity-free) systems. As a result, the role of impurities in phase transitions remains poorly understood, especially for systems with complex free energy landscapes featuring one or more intermediate metastable phases. In this study, we employed Monte Carlo simulations to investigate the effects of static impurities (quenched disorder) of varying length scales and surface morphologies on the crystal nucleation mechanism and kinetics in the Gaussian core model system-a representative model for soft colloidal systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!