Biofilm-related infections can develop everywhere in the human body and are rarely cleared by the host immune system. Moreover, biofilms are often tolerant to antimicrobials, due to a combination of inherent properties of bacteria in their adhering, biofilm mode of growth and poor physical penetration of antimicrobials through biofilms. Current understanding of biofilm recalcitrance toward antimicrobial penetration is based on qualitative descriptions of biofilms. Here we hypothesize that stress relaxation of biofilms will relate with antimicrobial penetration. Stress relaxation analysis of single-species oral biofilms grown in vitro identified a fast, intermediate and slow response to an induced deformation, corresponding with outflow of water and extracellular polymeric substances, and bacterial re-arrangement, respectively. Penetration of chlorhexidine into these biofilms increased with increasing relative importance of the slow and decreasing importance of the fast relaxation element. Involvement of slow relaxation elements suggests that biofilm structures allowing extensive bacterial re-arrangement after deformation are more open, allowing better antimicrobial penetration. Involvement of fast relaxation elements suggests that water dilutes the antimicrobial upon penetration to an ineffective concentration in deeper layers of the biofilm. Next, we collected biofilms formed in intra-oral collection devices bonded to the buccal surfaces of the maxillary first molars of human volunteers. Ex situ chlorhexidine penetration into two weeks old in vivo formed biofilms followed a similar dependence on the importance of the fast and slow relaxation elements as observed for in vitro formed biofilms. This study demonstrates that biofilm properties can be derived that quantitatively explain antimicrobial penetration into a biofilm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664570PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063750PLOS

Publication Analysis

Top Keywords

antimicrobial penetration
24
stress relaxation
12
relaxation elements
12
biofilms
10
penetration
9
relaxation analysis
8
bacterial re-arrangement
8
fast relaxation
8
slow relaxation
8
elements suggests
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!