Nonfluorescent chlorophyll catabolites (NCCs) were described as products of chlorophyll breakdown in Arabidopsis thaliana. NCCs are formyloxobilin-type catabolites derived from chlorophyll by oxygenolytic opening of the chlorin macrocycle. These linear tetrapyrroles are generated from their fluorescent chlorophyll catabolite (FCC) precursors by a nonenzymatic isomerization inside the vacuole of senescing cells. Here, we identified a group of distinct dioxobilin-type chlorophyll catabolites (DCCs) as the major breakdown products in wild-type Arabidopsis, representing more than 90% of the chlorophyll of green leaves. The molecular constitution of the most abundant nonfluorescent DCC (NDCC), At-NDCC-1, was determined. We further identified cytochrome P450 monooxygenase CYP89A9 as being responsible for NDCC accumulation in wild-type Arabidopsis; cyp89a9 mutants that are deficient in CYP89A9 function were devoid of NDCCs but accumulated proportionally higher amounts of NCCs. CYP89A9 localized outside the chloroplasts, implying that FCCs occurring in the cytosol might be its natural substrate. Using recombinant CYP89A9, we confirm FCC specificity and show that fluorescent DCCs are the products of the CYP89A9 reaction. Fluorescent DCCs, formed by this enzyme, isomerize to the respective NDCCs in weakly acidic medium, as found in vacuoles. We conclude that CYP89A9 is involved in the formation of dioxobilin-type catabolites of chlorophyll in Arabidopsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694711PMC
http://dx.doi.org/10.1105/tpc.113.112151DOI Listing

Publication Analysis

Top Keywords

chlorophyll catabolites
12
cytochrome p450
8
cyp89a9
8
cyp89a9 involved
8
involved formation
8
chlorophyll
8
wild-type arabidopsis
8
fluorescent dccs
8
catabolites
5
arabidopsis
5

Similar Publications

Background: Drought stress is a significant global challenge that negatively impacts cotton fiber yield and quality. Although many drought-stress responsive genes have been identified in cotton species (Gossypium spp.), the diversity of drought response mechanisms across cotton species remains largely unexplored.

View Article and Find Full Text PDF

Chlorophyll Degradation and its Physiological Function.

Plant Cell Physiol

August 2024

Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo 060-0819, Japan.

Research on chlorophyll degradation has progressed significantly in recent decades. In the 1990s, the structure of linear tetrapyrrole, which is unambiguously a chlorophyll degradation product, was determined. From the 2000s until the 2010s, the major enzymes involved in chlorophyll degradation were identified, and the pheophorbide a oxygenase/phyllobilin pathway was established.

View Article and Find Full Text PDF

RsOBP2a, a member of OBF BINDING PROTEIN transcription factors, inhibits two chlorophyll degradation genes in green radish.

Int J Biol Macromol

October 2024

Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China. Electronic address:

The green radish (Raphanus sativus L.) contains abundant chlorophyll (Chl). DOF-type transcription factor OBF BINDING PROTEIN (OBP) plays crucial functions in plant growth, development, maturation and responses to various abiotic stresses.

View Article and Find Full Text PDF

(garden nasturtium) is a plant with relevance in phytomedicine, appreciated not only for its pharmaceutical activities, but also for its beautiful leaves and flowers. Here, we investigated the phytochemical composition of senescent nasturtium leaves. Indeed, we identified yellow chlorophyll catabolites, also termed phylloxanthobilins, which we show to contribute to the bright yellow color of the leaves in the autumn season.

View Article and Find Full Text PDF

Pyrus (pear) is among the most nutritious fruits and contains fibers that have great health benefits to humans. It is mostly cultivated in temperate regions globally and is highly subjected to biotic and abiotic stresses which affect its yield. Pheophorbide a oxygenase (PAO) is an essential component of the chlorophyll degradation system and contributes to the senescence of leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!