A sensitive determination of a synthetic fluoroquinolone antibacterial agent, moxifloxacin (MOX), by an enhanced chemiluminescence (CL) method using a microfluidic chip is described. The microfluidic chip was fabricated by a soft-lithographic procedure using polydimethyl siloxane (PDMS). The fabricated PDMS microfluidic chip had three-inlet microchannels for introducing the sample, chemiluminescent reagent and oxidant, and a 500 µm wide, 250 µm deep and 82 mm long microchannel. An enhanced CL system, luminol-ferricyanide, was adopted to analyze the MOX concentration in a sample solution. CL light was emitted continuously after mixing luminol and ferricyanide in the presence of MOX on the PDMS microfluidic chip. The amount of MOX in the luminol-ferricyanide system influenced the intensity of the CL light. The linear range of MOX concentration was 0.14-55.0 ng/mL with a correlation coefficient of 0.9992. The limit of detection (LOD) and limit of quantification (LOQ) were 0.06 and 0.2 ng/mL respectively. The presented method afforded good reproducibility, with a relative standard deviation (RSD) of 1.05% for 10 ng/mL of MOX, and has been successfully applied for the determination of MOX in pharmaceutical and biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.2536DOI Listing

Publication Analysis

Top Keywords

microfluidic chip
20
pharmaceutical biological
8
biological samples
8
luminol-ferricyanide system
8
pdms microfluidic
8
mox concentration
8
mox
7
microfluidic
5
chip
5
chemiluminescence determination
4

Similar Publications

Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.

View Article and Find Full Text PDF

Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids.

View Article and Find Full Text PDF

Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip.

View Article and Find Full Text PDF

Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA.

Lab Chip

January 2025

Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.

View Article and Find Full Text PDF

Time-resolved single-cell secretion analysis microfluidics.

Lab Chip

January 2025

Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.

Revealing how individual cells alter their secretions over time is crucial for understanding their responses to environmental changes. Key questions include: When do cells modify their functions and states? What transitions occur? Insights into the kinetic secretion trajectories of various cell types are essential for unraveling complex biological systems. This review highlights seven microfluidic technologies for time-resolved single-cell secretion analysis: 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!