The aim of the present study was to evaluate the clinical usefulness of applying RT-nested PCR along with RFLP as a method for diagnosis and genotypic differentiation of Hantavirus in the acute-stage sera of HFRS patients as compared to the ELISA technique. A prospective study of patients with suspected HFRS patients was carried out. Sera were collected for serological evaluation by ELISA and RT-nested PCR testing. Primers were selected from the published sequence of the S segment of HTNV strain 76-118 and SEOV strain SR-11, which made it possible to obtain an amplicon of 403 bp by RT-nested PCR. The genotypic differentiations of the RT-nested PCR amplicons were carried out by RFLP. Sequence analyses of the amplicons were used to confirm the accuracy of the results obtained by RFLP. Of the 48 acute-stage sera from suspected HFRS patients, 35 were ELISA-positive while 41 were positive by RT-nested PCR. With Hind III and Hinf I, RFLP profiles of the RT-nested PCR amplicons of the 41 positive sera exhibited two patterns. 33 had RFLP profiles similar to the reference strain R22, and thus belonged to the SEOV type. The other 8 samples which were collected during October-December had RFLP profiles similar to the reference strain 76-118, and thus belonged to the HTNV type. Sequence phylogenetic analysis of RT-nested PCR amplicons revealed sdp1, sdp2 YXL-2008, and sdp3 as close relatives of HTNV strain 76-118, while sdp22 and sdp37 as close relatives of SEOV strain Z37 and strain R22 located in two separate clusters in the phylogenetic tree. These results were identical to those acquired by RFLP. RT-nested PCR integrated with RFLP was a rapid, simple, accurate method for detecting and differentiating the genotypes of Hantavirus in the acute-stage sera of suspected HFRS patients. In Shandong province, the main genotypes of Hantavirus belonged to the SEOV types, while the HTNV types were observed during the autumn-winter season.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-013-9655-z | DOI Listing |
Sci Rep
September 2024
Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
This study aims to determine the presence of norovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and bocavirus in air samples from a tertiary care hospital in Bangkok, Thailand. Air samples were collected in water using the BioSampler and concentrated using speedVac centrifugation. Based on RT-qPCR, norovirus RNA and SARS-CoV-2 RNA were detected in 13/60 (21.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
December 2024
Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
PLoS One
June 2024
Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China.
Alternative splicing (AS) is a universal phenomenon in eukaryotes, and it is still challenging to identify AS events. Several methods have been developed to identify AS events, such as expressed sequence tags (EST), microarrays and RNA-seq. However, EST has limitations in identifying low-abundance genes, while microarray and RNA-seq are high-throughput technologies, and PCR-based technology is needed for validation.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
November 2023
Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China.
Iran J Pathol
June 2023
Behavioral Disease Counseling Center, Kerman University of Medical Sciences, Kerman, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!